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This online appendix is organized as follows:

1. Section S.1 provides a discussion of the implications of using EZW preferences
in the context of uncertain lifetimes. We show that, unless the IES is
assumed to be greater than 1 and risk aversion less than 1, EZW preferences
generate implausible consumption paths, or implausible values for mortality
risk reduction.

2. Section S.2 considers a series of computational experiments to better un-
derstand how the different risks of the model (mortality, income and asset
return) interact with each other and contribute to our explanation of the
relationships between risk aversion on the one hand and savings and annuity
holdings on the other. This section focuses on risk-sensitive preferences.

3. Section S.3 contains two proofs: (i) the proof of Proposition 2, which is close
to the proof of Proposition 1 provided in the main text, and (ii) the proof
of translation invariance of risk-sensitive preferences. It also contains two
other technical developments: (iii) the derivation of the VSL expressions in
the risk-sensitive and additive setups, and (iv) the computation of the limits
of the EZW model when IES or risk aversion parameter converges to 1.

4. Section S.4 presents the computational method used to solve the quantitative
model.

To avoid confusion in the numbering of equations and sections between the main
text and this supplemental online appendix, all numbers in this online appendix
are prefixed by “S”. Conversely, numbers without a prefix refer to an equation or a
section in the main text.

∗Bommier: abommier@ethz.ch; Le Grand: francois.le-grand@rennes-sb.com; O’Dea:
cormac.odea@yale.edu; Harenberg: dan.harenberg@gmail.com.
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S.1 Using EZW preferences

In the absence of bequest motives, the standard homothetic EZW specification
corresponds to the following recursion:

Vt =
(

(1 − β)c1−σ
t + βπ

1−σ
1−γ

t

(
E[V 1−γ

t+1 ]
) 1−σ

1−γ

) 1
1−σ

, (S.1)

where 0 < σ ̸= 1 is the inverse of the IES and 0 < γ ̸= 1 is the risk aversion
parameter (see Gomes and Michaelides, 2005 or Córdoba and Ripoll, 2017 among
others). Note that the cases where σ = 1 can be deduced from (S.1) by continuity,
while the case where γ = 1 and σ ̸= 1 is either ill-defined, or with irrelevant
properties. See Section S.3.4 below for mathematical derivations.

When γ = σ, the EZW model reduces to the additive model and when σ = 1,
the EZW specification yields a special case of risk-sensitive preferences. In all cases
where σ ≠ 1 and σ ̸= γ the EZW model is not monotone with respect to first-order
stochastic dominance.

As discussed in the main text, when 1−σ
1−γ

< 0, the recursion (S.1) may be
ill-defined and admits Vt = 0 (independently of consumption choices) as the unique
solution. A further discussion of the theoretical aspects can be found in Bommier
et al. (2021).

Here, we ignore these convergence issues and focus on the model implications
in terms of consumption and savings paths, as well as for the value of mortality
risk reduction.1 In this exercise, we make the following assumptions:

– the demographic aspects (mortality risk, retirement age, maximum age) are
the same as in the main text;

– the labor income is risky and follows the same calibration as in the main text;

– agents can invest in riskless bonds and risky stocks, whose returns are the
same as in the main text; there is no annuity;

– participation in the stock market is subject to a once-in-a-life cost, which is
the same as in the main text;

– the time preference parameter is set to 0.953 and the IES to 1/2, as in the
calibration for the additive model in our main analysis.

1Formally, if 1−σ
1−γ < 0, we will assume that at the final date Tmax (such that πTmax = 0)

– which corresponds to 100 years in our data – we have VTmax = (1 − β)
1

1−σ cTmax , while formally
accounting for convergence issues would lead to VTmax = 0 (and thus Vt = 0 for all t ≤ Tmax).
This assumption is equivalent to assuming that the discount rate is set to zero in the final period.
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Table 1: EZW calibration.

Parameter Value Source

Demographics
Retirement date, TR 47 (= 65 − 18) SSA Historical Normal Re-

tirement Age in US
Maximal life duration, TM 82 (= 100 − 18)

Cond. survival rates, {πt} US Life Tables for a male co-
hort born in 1940 (Bell and
Miller, 2005)

Endowments
Average wage, ȳ US$ 43,104 Lifecycle average for 1940s

men (own estimates)
Age productivity, {µt} Lifecycle average for 1940s

men (own estimates)
Public pension, yR 40%×ȳ Average SS replacement

rate (Biggs and Springstead,
2008)

Labor income autocorr., ρ 0.977 Own estimates
Var. of persistent shocks, σ2

υ 0.010 Own estimates
Asset Markets

Gross risk-free return, Rf 1.02 Campbell and Viceira (2002)
Equity premium, ω 4% Campbell and Viceira (2002)
Stock volatility, σν 15.7% Campbell and Viceira (2002)
Participation cost, F 123% of ȳ Own calibration (additive

model)
Preferences

Inverse of IES, σ 2 Own calibration (additive
model)

Discount factor, β 0.953 Own calibration (additive
model)

Life-death utility gap, ul 0 Homothetic preferences
Bequest motive strength, θ 0 No bequest motive
Bequest luxury good, x 0 No bequest motive

Notes: One unit of consumption is equal to ȳ.

– there is no bequest motive: θ = x̄ = 0.

We summarize the calibration in Table 1. As in the main text, the reported values
assume that 1 unit of consumption corresponds to the average income ȳ.

EZW specifications represented as in (S.1) can be grouped in 4 (= 2 × 2) main
categories depending on whether σ is less or greater than 1 and whether γ is less
or greater than 1.2 Whether σ ≶ 1 and γ ≶ 1 matter for two reasons. First, it

2We ignore here the cases with σ = 1, corresponding to additive or risk-sensitive preferences
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determines the sign of the exponent 1−σ
1−γ

, and thus how the discount factor βπ
1−σ
1−γ

t

behaves at old ages when πt becomes small. Second, it also determines the sign
of ∂Vt

∂πt
, and hence the sign of the value of mortality risk reduction. This can be

summarized in Table 2.

Table 2: Discount factor βπ
1−σ
1−γ

t and marginal utility of survival probability ∂Vt

∂πt
in

the EZW model as a function of parameter values.

σ < 1 σ > 1

γ < 1 βπ
1−σ
1−γ

t < 1 βπ
1−σ
1−γ

t ≫ 1 for small πt
∂Vt

∂πt
> 0 ∂Vt

∂πt
> 0

γ > 1 βπ
1−σ
1−γ

t ≫ 1 for small πt βπ
1−σ
1−γ

t < 1
∂Vt

∂πt
< 0 ∂Vt

∂πt
< 0

In Table 2, we have bolded and shaded the properties that we consider to be
major issues. This may related either to the discount factor βπ

1−σ
1−γ

t which becomes
very large when πt is small (i.e. at old ages), or to the sign of the derivative ∂Vt

∂πt

which says whether agents associate a positive value to mortality risk reduction.
As can be readily seen from Table 2, all cases but the one where both σ and γ are
smaller than 1 have at least one problematic feature, generating either implausible
patience patterns or negative value of mortality risk reduction (or both). To
illustrate these issues, we plot the consumption and VSL profiles for four cases,
corresponding to the four possibilities: σ ≶ 1 and γ ≶ 1. For IES, we consider the
two values σ = 1

2 and σ = 2, while for the risk aversion parameter, we consider
γ = 2

3 and γ = 3.3

The lifetime consumption paths are plotted in Figure 1. The consumption panels
(b) and (c) suggest counterfactual consumption profiles, in which consumption
remains low for most of the life-cycle, before rising sharply in old age. This is due
to the fact that the parameters in panels (b) and (c) imply 1−σ

1−γ
< 0 and thus a

discount factor βπ
1−σ
1−γ

t that becomes large (and much larger than one) at old ages,
when πt is small. In these two specifications, mortality tends to reduce impatience,
which makes them unsuitable for modeling consumption-saving behaviors. Cases
(a) and (d) do not suffer from such drawbacks.

However, case (d) where both γ and σ are both greater than one predicts
counterfactual negative values of mortality risk reduction. This can be seen in
that are already discussed in the main text. As explained in Section S.3.4, below, the cases with
γ = 1 but σ ̸= 1 are not well defined.

3We choose these values so that 1−σ
1−γ is never equal to 1, in which case the EZW model reduces

to the additive model.
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Figure 1: Consumption lifetime paths for the four parametrizations of the EZW
model.
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Case (b): σ = 2 and γ = 2
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Case (c): σ = 1
2 and γ = 3
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Case (d): σ = 2 and γ = 3
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Figure 2, where we plot the VSL lifetime path for panels (a) and (d). We do
not plot the paths for cases (b) and (c) which imply counterfactual consumption
profiles. In case (d), VSL is negative at all ages, meaning that people would be
willing to pay to shorten their lives.

Figure 2: VSL lifetime paths for two parametrizations of the EZW model.
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Case (d): σ = 2 and γ = 3
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Even in the context of exogenous mortality, assuming a negative value of life
has problematic consequences. Indeed, as we discussed in Section 3 of the main
paper, the sign of the value of life determines the impact of risk aversion. To
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illustrate, in Figure 3, we focus on the cases where 1−σ
1−γ

> 0 (cases (a) and (d))
and plot the impact of an increase in risk aversion on savings profiles. In panel
(a), where σ = 1

2 , we consider the effect of increasing the risk aversion parameter
from γ = 2

3 (value in Figures 1 and 2) to γ = 3
4 , for which we still have 1−σ

1−γ
> 0.

In panel (d), where σ = 2, we consider an increase from γ = 3 from γ = 4 (value
in Figures 1 and 2). Similarly to the theoretical predictions derived in Section 3
for risk-sensitive preferences, we see that when the value of life is positive (panel
(a)), an increase in risk aversion leads to lower savings, while the opposite is true
when the value of mortality risk reduction is negative (panel (d)). This, in turn,
has implications for other aspects, such as stock market participation. Indeed, as
we also report in Figure 3, we find that the stock market participation decreases
with risk aversion when the value of life is positive (panel (a)), while stock market
participation increases with risk aversion when the value of life is negative (in panel
(d)). In other words, when the value of life is negative, more risk averse agents
tend to participate more in the risky asset market.

Figure 3: Savings profiles and stock market participation paths for two cases, for
the benchmark risk aversion parameter and a larger parameter value.
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Case (d): σ = 2 and γ = 3 or γ = 4
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(a) Case (a): σ = 1
2 and γ = 2
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(b) Case (d): σ = 2 and γ = 3 or γ = 4
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Overall, σ < 1 and γ < 1 is the only case where the EZW specification does
not generate counterfactual predictions. In such cases, consumption profiles are
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plausible, the value of mortality risk reduction is positive and the predictions about
the role of risk aversion are similar to those obtained in the main body of the paper
with risk-sensitive preferences. However, constraining σ to be less than one (and
thus the IES to be greater than one) can be a non-trivial constraint. First, most of
the literature provides estimates of the IES that are less than one (see Havránek,
2015). Moreover, a high IES is likely to lead to counterfactual large fluctuations in
consumption over the life-cycle – which seems to be the case in the consumption
profile of panel (a) of Figure 1.

S.2 Understanding the interplay between the dif-
ferent risks

We conduct a series of computational experiments to better understand how the
risks and their interplay are shaping the role of risk aversion on savings and annuity
holdings in the case of risk-sensitive preferences.

We consider three different risky environments. In the first one, agents face
solely a mortality risk. There is no income risk or stock market participation. This
simple model is a direct extension of our theoretical framework of Section 3 to the
case of multiple periods and a finite value of mortality risk reduction. The second
environment adds income risk to the previous setup. The last environment further
allows stock market participation and therefore corresponds to our baseline model.

We investigate the role of risk aversion both in the small (variations between
two positive values of k) and in the large (between k = 0 and k > 0). We therefore
consider three values for the risk aversion parameter: k = 0 (additive model),
baseline value of k (k = 1.02, as in our benchmark calibration), and a high value of
k (k = 1.25, illustrating an increase in risk aversion).

The calibration is the same as in the baseline calibration, except that we possibly
shut off one or both of two sources of risk: income risk and/or stock holdings. The
value of the higher k is chosen such that the consumption profiles of the three
models intersect (i.e., such that there is one age for which the consumption is the
same in all models). The results can be summarized as follows.

Case 1: There is no income uncertainty and no risky asset. We shut
off the income risk and participation in the stock market. In the calibration, this
implies setting income risk variances are zero and the stock market participation
cost to infinity. Agents are heterogeneous in terms of income paths, just like when
we assume income uncertainty, but they know ex-ante their (deterministic) income
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trajectories. They can only save in riskless bonds and annuities. The results are
gathered in Figure 4, where we report the lifetime profiles related to savings and
consumption (Figures 4a and 4b), as well as the proportion of agents holding
annuities (4c). The acronym SM in graph labels stands for “simple model”.

Risk aversion, be it in the small or in the large, has an unambiguous effect on
savings and consumption. More risk averse agents tend to consume earlier in life
and hence to save less. Conversely, they tend to consume less in late life. The
consumption and savings in early age are the same for the three models because
young agents are credit-constrained and simply live hand-to-mouth. The income
being the same in all three models, the consumption profiles when credit-constrained
are the same in the three models. Regarding annuities, the share of agents holding
annuities decreases with risk aversion.

These results are in line with those of the theory of Section 3. What was formally
shown to hold for an infinite value of mortality risk reduction in Proposition 2
tends to hold when assuming a finite value of mortality risk reduction.

Figure 4: Simple Model.
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Case 2: There is no risky asset but there is realistically-calibrated income
risk. We add income risk to the previous model. Stock market participation
cost is still infinite, but income risk variances are set to their baseline values. The
results are gathered in Figure 5, where we report the lifetime profiles related to
savings and consumption (Figures 5a and 5b), as well as the proportion of agents
holding annuities (5c).

The overall picture remains similar to the previous case. However, because
of income uncertainty, agents in the three cases tend to save more than in the
absence of income risks, reflecting a standard prudence effect. Hence, agents stop
being constrained at slightly younger ages. The precautionary motives also tends
to increase the proportion of agents holdings annuities, and the effect is stronger
for more risk averse agents. In other words, the cross-effect of income risk and risk
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aversion on savings is positive.4

This case confirms that the well-known precautionary motive is at play in our
model. However, its quantitative effect is rather modest and it does not offset the
effect of mortality risk on savings. When income and mortality risks are combined,
more risk averse agents still end up saving less. As in Case 1, annuity purchases
fall with risk aversion.

Figure 5: Simple Model with Income Uncertainty.
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Case 3: There is a risky asset and income risk. This case corresponds to
the baseline calibration (hence, the label BS). Results are plotted in Figure 6. The
introduction of risky assets has an unambiguous effect on savings: all agents tend
to have a higher mean wealth. Since risky assets offer on average a much higher
return than riskless asset, participation to stock markets allow agents through
the compounding effects to enjoy higher savings. The benefit of risky asset is
higher when agents participate more often to stock markets and hold a higher share
of their wealth in stocks. Both effects are more pronounced for less risk averse
agents. This explains why additive agents see the largest change in wealth with
the introduction of risky assets, while agents with higher k see the smallest change
in wealth from it. The differences between lifetime savings profiles in Figure 6a are
thus much more pronounced than in Figure 5a in the absence of risky assets.

In addition to magnifying wealth heterogeneity generated by risk aversion
heterogeneity, the introduction of risky assets also strongly impacts the demand for
annuities. For all agents, annuities are crowded-out by stocks. The introduction of
stocks reduces the demand for annuities. As can be seen in Figure 6c, the effect
is stronger for more risk averse agents. The reduction in the proportion of agents
annuitizing is modest for additive agents, as the share decreases by approximately
10 points compared to the SMIU. The reduction is much larger for risk averse
agents (with baseline k) for whom the share of annuity holdings drops from around

4This cross-effect is not clear cut on total savings of Figure 4a because of the compounded
wealth effects.
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70% to 5%. The crowding out effect of stocks on annuities is thus very sizable
for risk averse agents. Finally, for the most risk averse agents, they hold very few
annuities.

Figure 6: Baseline Model.
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S.3 Additional proofs

This section contains two proofs and two technical developments. First, in Section
S.3.1, we prove the result of Proposition 2. Second, in Section S.3.2, we prove the
translation invariance property of risk-sensitive preferences. Third, in Section S.3.3,
we provide the detailed derivation of the VSL expressions in the risk-sensitive and
additive setups. Finally, in Section S.3.4, we discuss the limit cases where the IES
or the risk aversion tends to 1 in EZW specifications.

S.3.1 Proof of Proposition 2

We consider the program of an agent choosing riskless savings and annuities to
maximize her utility function given by the limit of the risk-sensitive utility function
for ul → ∞, while holding the quantity κ = kul constant. The program can be
written as follows:

V ∞
t (at−1, bt−1) = max

at,bt

(1 − β)u(yt + Rf (bt−1 + at−1

πt−1
) − at − bt) (S.2)

+ β

πt + (1 − πt)zκ,t+1

(
πtV

∞
t+1(at, bt) + (1 − πt)zκ,t+1Et[(1 − β)v(Rfbt)]

)
,

where (yt)t is the deterministic income path and we highlight the dependence of
zκ,t in κ:

log(zκ,t) = (1 − β)κ − β log (πt/zκ,t+1 + 1 − πt) . (S.3)
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We assume that the program admits an interior solution at all dates, denoted by
(aκ,t, bκ,t)t. These solutions are given by the following first-order conditions:

u′(yt + Rf (bκ,t−1 + aκ,t−1

πt−1
) − aκ,t − bκ,t)

= βRf

πt + (1 − πt)zκ,t+1

(
πtu

′(yt+1 + Rf (bκ,t + aκ,t

πt

) − aκ,t+1 − bκ,t+1)

+ (1 − πt)zκ,t+1v
′(Rfbκ,t)

)
,

= βRf

πt + (1 − πt)zκ,t+1
u′(yt+1 + Rf (bκ,t + aκ,t

πt

) − aκ,t+1 − bκ,t+1),

or

u′(yt + Rf (bκ,t−1 + aκ,t−1

πt−1
) − aκ,t − bκ,t) = βRf

πt + (1 − πt)zκ,t+1

×u′(yt+1 + Rf (bκ,t + aκ,t

πt

) − aκ,t+1 − bκ,t+1),

u′(yt+1 + Rf (bκ,t + aκ,t

πt

) − aκ,t+1 − bκ,t+1) = zκ,t+1v
′(Rfbκ,t),

u′(yt + Rf (bκ,t−1 + aκ,t−1

πt−1
) − aκ,t − bκ,t) = βRfzκ,t+1

πt + (1 − πt)zκ,t+1
v′(Rfbκ,t).

We compute the derivatives of the FOCs with respect to κ. We denote the
partial derivatives by a prime: a′

κ,t = ∂aκ,t

∂κ
, b′

κ,t = ∂bκ,t

∂κ
, and z′

κ,t = ∂zκ,t

∂κ
. We also

denote by cκ,t = yt + Rf(bκ,t−1 + aκ,t−1
πt−1

) − aκ,t − bκ,t the date-t consumption level.
We obtain:

−u′′(cκ,t)
u′(cκ,t)

(b′
κ,t + a′

κ,t) = −
(1 − πt)z′

κ,t+1

πt + (1 − πt)zκ,t+1
(S.4)

+ u′′(cκ,t+1)
u′(cκ,t+1)

(Rf (b′
κ,t +

a′
κ,t

πt

) − (b′
κ,t+1 + a′

κ,t+1)),

−u′′(cκ,t)
u′(cκ,t)

(b′
κ,t + a′

κ,t) =
πtz

′
κ,t+1

zκ,t+1(πt + (1 − πt)zκ,t+1)
+ Rf v′′(Rfbκ,t)

v′(Rfbκ,t)
b′

κ,t. (S.5)

We prove by backward induction that a′
κ,t < 0, b′

κ,t > 0, and b′
κ,t + a′

κ,t < 0.
At date t = Tmax − 1, we have b′

κ,t+1 = a′
κ,t+1 = 0 and the result follows from the

two-period model. In particular, we have b′
κ,Tmax−1 + a′

κ,Tmax−1 < 0. We assume that
the result holds at some date t + 1, such that b′

κ,t+1 + a′
κ,t+1 < 0.
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Combining (S.4) and (S.5) to remove z′
κ,t+1, we obtain:

b′
κ,t = −λb′

κ,t
a′

κ,t + µb′
κ,t

(b′
κ,t+1 + a′

κ,t+1), (S.6)

where: λb′
κ,t

=
−u′′(cκ,t)

u′(cκ,t) − Rf

πt+(1−πt)zκ,t+1

u′′(cκ,t+1)
u′(cκ,t+1)

−u′′(cκ,t)
u′(cκ,t) − πtRf

πt+(1−πt)zκ,t+1

u′′(cκ,t+1)
u′(cκ,t+1) − (1−πt)zκ,t+1Rf

πt+(1−πt)zκ,t+1

v′′(xt+1)
v′(xt+1)

> 0, (S.7)

µb′
κ,t

=
−u′′(cκ,t+1)

u′(cκ,t+1)
πt

πt+(1−πt)zκ,t+1

−u′′(cκ,t)
u′(cκ,t) − πtRf

πt+(1−πt)zκ,t+1

u′′(cκ,t+1)
u′(cκ,t+1) − (1−πt)zκ,t+1Rf

πt+(1−πt)zκ,t+1

v′′(xt+1)
v′(xt+1)

> 0. (S.8)

We then use (S.6) and (S.7) to obtain:

a′
κ,t

πt

+ b′
κ,t = λa′

κ,t
πt

+b′
κ,t

a′
κ,t + µb′

κ,t
(b′

κ,t+1 + a′
κ,t+1), (S.9)

where:

λa′
κ,t
πt

+b′
κ,t

=
1−πt

πt

(
−u′′(cκ,t)

u′(cκ,t) − zκ,t+1Rf

πt+(1−πt)zκ,t+1

v′′(xt+1)
v′(xt+1)

)
−u′′(cκ,t)

u′(cκ,t) − πtRf

πt+(1−πt)zκ,t+1

u′′(cκ,t+1)
u′(cκ,t+1) − (1−πt)zκ,t+1Rf

πt+(1−πt)zκ,t+1

v′′(xt+1)
v′(xt+1)

> 0. (S.10)

Combining (S.9) and (S.10) yields:

Rf (b′
κ,t +

a′
κ,t

πt

) − (b′
κ,t+1 + a′

κ,t+1) = Rfλa′
κ,t
πt

+b′
κ,t

a′
κ,t − µc′

κ,t
(b′

κ,t+1 + a′
κ,t+1), (S.11)

where:

µc′
κ,t

=
−u′′(cκ,t)

u′(cκ,t) − (1−πt)zκ,t+1Rf

πt+(1−πt)zκ,t+1

v′′(xt+1)
v′(xt+1)

−u′′(cκ,t)
u′(cκ,t) − πtRf

πt+(1−πt)zκ,t+1

u′′(cκ,t+1)
u′(cκ,t+1) − (1−πt)zκ,t+1Rf

πt+(1−πt)zκ,t+1

v′′(xt+1)
v′(xt+1)

> 0. (S.12)

The difference of (S.4) and (S.5) implies:

0 = u′′(cκ,t+1)
u′(cκ,t+1)

(Rf (b′
κ,t +

a′
κ,t

πt

) − (b′
κ,t+1 + a′

κ,t+1)) −
z′

κ,t+1

zκ,t+1
− Rf v′′(xt+1)

v′(xt+1)
b′

κ,t,

which using (S.11) leads to:

a′
κ,t =

− z′
κ,t+1

zκ,t+1

−u′′(cκ,t+1)
u′(cκ,t+1) Rfλa′

κ,t
πt

+b′
κ,t

− Rf v′′(xt+1)
v′(xt+1) λb′

κ,t

(S.13)

+
−u′′(cκ,t+1)

u′(cκ,t+1) µc′
κ,t

− Rf v′′(xt+1)
v′(xt+1) µb′

κ,t

−u′′(cκ,t+1)
u′(cκ,t+1) Rfλa′

κ,t
πt

+b′
κ,t

− Rf v′′(xt+1)
v′(xt+1) λb′

κ,t

(b′
κ,t+1 + a′

κ,t+1).

Equation (S.3) implies that z′
κ,t+1

zκ,t+1
> 0. Thus, using the induction hypothesis, we

have from (S.13) that a′
κ,t < 0 and from (S.11) that a′

κ,t

πt
+ b′

κ,t < 0.
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We also have from (S.6):

a′
κ,t + b′

κ,t =
− (πt−1)Rf

πt+(1−πt)zκ,t+1

u′′(cκ,t+1)
u′(cκ,t+1) − (1−πt)zκ,t+1Rf

πt+(1−πt)zκ,t+1

v′′(xt+1)
v′(xt+1)

−u′′(cκ,t)
u′(cκ,t) − πtRf

πt+(1−πt)zκ,t+1

u′′(cκ,t+1)
u′(cκ,t+1) − (1−πt)zκ,t+1Rf

πt+(1−πt)zκ,t+1

v′′(xt+1)
v′(xt+1)

a′
κ,t

− u′′(cκ,t+1)
u′(cκ,t+1)

πt(b′
κ,t+1 + a′

κ,t+1),

which with a′
κ,t < 0 implies a′

κ,t + b′
κ,t < 0.

We also have from (S.5) and (S.13):

−Rf v′′(xt+1)
v′(xt+1)

b′
κ,t = u′′(cκ,t)

u′(cκ,t)
(b′

κ,t + a′
κ,t) +

πtz
′
κ,t+1

zκ,t+1(πt + (1 − πt)zκ,t+1)
> 0,

implying b′
κ,t > 0.

S.3.2 Proof of translation invariance in the risk-sensitive
model

We recall that the recursion characterizing the utility function representing risk-
sensitive preferences in the presence of bequest can be written as follows:

Vt = (1 − β)u(ct) − β

k
log

(
πtEt

[
e−kVt+1

]
+ (1 − πt)Et

[
e−k(1−β)v(xt+1)

])
, (S.14)

where we use the same notation as in the main text.
We will prove the following lemma.

Lemma 1 Consider the specification (S.14) and assume that v(0) is finite. Simul-
taneously changing the instantaneous utility function for consumption to u(c) −
(1 − β)v(0) and that for bequest to v(x) − v(0) produces a simple shift in utilities
(Vt is changed to Vt − (1 − β)v(0)) that has no effect on preferences.

In other words, Lemma 1 implies that if the utility of dying and leaving no
bequest is finite, we can normalize v by setting v(0) = 0 without loss of generality.
Note that the results also hold when there is no bequest motive (v(x) equals a
finite constant ud independent from x).

Proof. Observe that we have:

log
(
πtEt

[
e−kVt+1

]
+ (1 − πt)Et

[
e−k(1−β)v(xt+1)

])
= log

(
e−k(1−β)v(0)

(
πtEt

[
e−k(Vt+1−(1−β)v(0))

]
+ (1 − πt)Et

[
e−k(1−β)(v(xt+1)−v(0))

]))
,

= −k(1 − β)v(0) + log
(
πtEt

[
e−k(Vt+1−(1−β)v(0))

]
+ (1 − πt)Et

[
e−k(1−β)(v(xt+1)−v(0))

])
.
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Hence, we deduce:

Vt − (1 − β)v(0) = (1 − β)u(ct) + β(1 − β)v(0) − (1 − β)v(0)

− β

k
log

(
πtEt

[
e−k(Vt+1−(1−β)v(0))

]
+ (1 − πt)Et

[
e−k(1−β)(v(xt+1)−v(0))

])
,

= (1 − β)(u(ct) − (1 − β)v(0))

− β

k
log

(
πtEt

[
e−k(Vt+1−(1−β)v(0))

]
+ (1 − πt)Et

[
e−k(1−β)(v(xt+1)−v(0))

])
.

Defining Ṽt = Vt − (1 − β)v(0) and ũ(c) = u(c) − (1 − β)v(0), we obtain that
the preferences represented by Vt may also be represented by Ṽt defined by the
following recursion:

Ṽt = (1 − β)ũ(ct) − β

k
log

(
πtEt

[
e−kṼt+1

]
+ (1 − πt)Et

[
e−k(1−β)(v(xt+1)−v(0))

])
,

which completes the proof.

S.3.3 Deriving VSL expressions

We denote by wt = At−1 + Rfbt−1 + Rs
t st−1 the beginning-of-period wealth by

ωt = qtat + bt + st the total saving choice, by αb
t = bt

ωt
the share in bonds and by

αs
t = st

ωt
the share in stocks. The program of the alive agent can be rewritten as:

Vt(wt, At−1, ηt−1, ζt−1) = max
ct≥0,ωt≥0,(αb

t ,αs
t )∈[0,1]2

(1 − β)u(ct)

−β

k
log

(
πtEt

[
e−kVt+1(wt+1,At,ηt,ζt)

]
+ (1 − πt)Et

[
e−k(1−β)v(xt+1)

])
,

subject to: yt + wt = ct + ωt + 1ηt=11ηt−1=0F , wt = At−1 + ωt( 1
qt

+ (Rf − 1
qt

)αb
t +

(Rs
t+1 − 1

qt
)αs

t ), and xt = ωt(Rfαb
t + Rs

t+1α
s
t ).

The envelope theorem yields ∂Vt

∂wt
= ∂Vt

∂ct
= (1 − β)u′(ct). Using ∂(1/qt)

∂πt
= − 1

πtqt

and ωt

qt
(1 − αb

t − αs
t ) = at, after some manipulation, we get:

V SLt = β

1 − β

1
c−σ

t

(
−Et[e−kVt+1(bt,At,st,ηt,ζt)]−Et[e−k(1−β)v(xt+1)]

k

)
πtEt [e−kVt+1(bt,At,st,ηt,ζt)] + (1 − πt)Et [e−k(1−β)v(xt+1)] (S.15)

− βat

Et

[(
ct+1

ct

)−σ
e−kVt+1(bt,At,st,ηt,ζt)

]
πtEt [e−kVt+1(bt,At,st,ηt,ζt)] + (1 − πt)Et [e−k(1−β)v(xt+1)] ,

and in the additive case, by continuity for k → 0:

V SLadd
t = β

c−σ
t

(
V add

t+1 (bt, At, st, ηt, ζt)
1 − β

− kv(xt+1)
)

− βatEt

[
u′(ct+1)
u′(ct)

]
. (S.16)
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S.3.4 The limit cases in the EZW model

We consider the no-bequest case. The recursion defining the utility Vt representing
EZW preferences is:

Vt =
(

(1 − β)c1−σ
t + βπ

1−σ
1−γ

t

(
Et[V 1−γ

t+1 ]
) 1−σ

1−γ

) 1
1−σ

. (S.17)

We consider the limits of the utility function for σ → 1 and γ → 1.

S.3.4.1 The limit σ → 1, while γ ̸= 1.

We conduct a first-order development to compute the limit when σ → 1. Taking
the log of (S.17), we deduce that preferences can be represented by Ṽt = log Vt

defined by the following recursion:

Ṽt = (1 − β) log(ct) + β

1 − γ
log(πtEt[e(1−γ)Ṽt+1 ]), (S.18)

which corresponds to the risk-sensitive utility recursion with k = γ−1 and kud = ∞.
Note that recursion (S.18) requires πt > 0 at all dates. Otherwise, if πTmax = 0 for
some Tmax, then (1 − γ)Ṽt = −∞ for all t ≤ Tmax.

S.3.4.2 The limit γ → 1, while σ ̸= 1.

Such limit case is either undefined, degenerate or exhibits implausible impatience
pattern. To show that one may focus on the case where the only uncertainty is
related to survival, so that the expectation sign Et can be removed in (S.17). The
recursion (S.17) then becomes:

Vt =
(

(1 − β)c1−σ
t + βπ

1−σ
1−γ

t V 1−σ
t+1

) 1
1−σ

To discuss the limit, one has to distinguish the cases where γ tends to 1 from above
or from below, and whether σ is larger or smaller than 1.

In the case where γ → 1− and σ < 1 then 1−σ
1−γ

→ +∞ and Vt → (1 − β)
1

1−σ ct.
The model then exhibit infinite impatience, where the future does not matter. The
case where γ → 1+ and σ > 1 is similar. When γ → 1+ and σ < 1 then 1−σ

1−γ
→ −∞

and Vt → ∞, the limit being then undefined. Last, when γ → 1− and σ > 1 then
1−σ
1−γ

→ −∞ and Vt → 0, the limit model being a degenerate one.

S.3.4.3 The limit γ → 1 and σ → 1.

Due to the issues that appear when taking the limit γ → 1 , the results is sensitive
to the order in which the limits γ → 1 and σ → 1 are considered. However, the
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limit utility is always ill-defined, being equal to either 0 or infinity, independently
of consumption choices.

S.4 Details on the computational implementation

There is no analytical solution to the agents’ problem outlined in Section 4 of the
main paper. We solve the model and obtain decision rules numerically and then
use those decision rules to simulate the agents’ behavior. The next two subsections
describe the solution of the model and the simulation of decision rules.

S.4.1 Model solution

While alive, the agent maximizes her intertemporal utility by choosing a feasible
allocation (ct, bt, at, st, ηt)t≥0 in the set of feasible allocations, denoted A. The utility
Vt of the alive agent at age t depends on five state variables: the beginning-of-period
holdings in bonds bt−1, annuities At−1 and stocks st−1; the stochastic component of
labor income, ζt−1; and the stock market participation status, ηt−1 ∈ {0, 1}. The
last of these is discrete, while the first four are continuous. Given that annuity
purchase may only occur in period TR − 1, we have At = 0 for all t < TR and
At = aTR−1 for t ≥ TR. Since there exists a maximal age for the agent, TM , we
solve the model by iterating on the value function, starting from the last period of
life. Utility maximization involves solving:

VTM
(bTm−1, ATm−1, sTm−1, ηTm−1, ζTm−1) = (S.19)

max
(cTM

,bTM
,aTM

,sTM
,wTM

,ηTM
)∈A

(1 − β)u(cTm) + Et

[
e−k(1−β)v(xTm+1)

]
,

subject to the constraints, which we don’t restate here, outlined in Section 4 of
the main paper. Due to the presence of stocks in bequest, the continuation utility
in case of death is uncertain. Both the instantaneous utility function for period
Tm(u(xTm)) and the utility obtained when dying and bequeathing xTM+1(v(xTM+1))
are known and the model is solved for a discrete set of points on a grid. This gives
us knowledge of VTm at a subset of the points in the state space and allows us to
approximate VTm as V̂Tm at all points. With this approximation in hand, we solve
an approximation to problem (S.19) for period TM − 1 and then, iteratively, for all
preceding periods t:

Vt(bt−1, At−1, st−1, ηt−1, ζt−1) = max
(ct,bt,at,st,wt,ηt)∈A

(1 − β)u(ct) (S.20)

−β

k
log

(
πtEt

[
e−kV̂t+1(bt,At,st,ηt,ζt)

]
+ (1 − πt)Et

[
e−k(1−β)v(xt+1)

])
.
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Note that the only difference between the maximand in (S.20) and that in our
household’s problem is that the continuation value function is an approximate value
function. We will now, briefly, discuss four features of the numerical procedure:
i) the discretization of the continuous variables, ii) the integration of the value
function, iii) the approximation method for evaluating the value function at points
outside the discretized state space and iv) how the optimization is carried out.

Discretization of the continuous variables. We define a variable, total liquid
wealth, which is the sum of bond and stock holdings at the start of a period. We
define a grid of 54 points from $0 to $10m such that the gaps between successive
grid points are smaller at lower levels of wealth, where the curvature of the value
function will be greater. We define a grid of 36 points for annuity income from
$0 to $800,000 such that the gaps between successive grid points are smaller at
lower levels of income. Earnings are placed on a grid of 9 points each year using
the procedure introduced by Tauchen (1986).

Integration. There are three risks facing households: mortality, earnings, and
financial risks. The risks are independent. Realizations for the first of these are
naturally discrete and integration involves a simple weighted average. For the latter
two, we define a discrete set of possible realizations and integrate over outcomes
using the Tauchen (1986) procedure.

Approximation. To evaluate the value function at points other than those in
the discrete sub-set of points, we use linear interpolation in multiple dimensions.

Optimization. Every period households make up to four choices. They decide
how much to consume, how much to save in each of bonds and the risky asset,
whether to pay the participation cost (if they have not previously done so) and how
much of an annuity income stream to purchase (in the period before retirement).
Our problem is not globally concave, so our optimization of the household’s decision
problem cannot fully rely on local approaches. We therefore start by discretizing
the choice variables. We define three grids on the unit interval, St

a, Ss, Sc, which
will represent shares of available resources dedicated to purchases of annuities,
portfolio shares in stocks and consumption respectively. All grids have equally
spaced nodes from 0 to 1 (except that in periods other than period TR−1, the
grid for annuities has only one element, 0, as no annuity purchase is possible in
those periods). We evaluate the household’s objective function at each combination
of (st

a,i)i=1,...,It in St
a, (ss,j)j=1,...,J in Ss, and (sc,k)k=1,...,K in Sc,k. Defining the
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total available resources as Rt = yt + wt (the sum of income and wealth) in time
t, we set the annuity choice to st

a,iRt, the level of saving in the risky asset set
to ss,j(1 − st

a,i)Rt, the level of consumption as sc,k(1 − ss,j)(1 − st
a,i)Rt and the

savings in the bond as (1 − sc,k)(1 − ss,j)(1 − st
a,i)Rt. We find the combination

of the points that yields the maximum value to the household. This is our
candidate optimal decision. We then do a further local search for the split between
consumption and the bond using golden section search. Formally, taking the
candidate maximum as indexed by st

a,i∗ in St
a, ss,j∗ in Ss, sc,k∗ in Sc,k, we look for

the utility-maximizing split between consumption and the bond in the interval for
consumption of [sc,max{1,k∗−1}(1−ss,j∗)(1−st

a,i∗)R, sc,min{K,k∗+1}(1−ss,j∗)(1−st
a,i∗)R].

For points where individuals have not already paid the participation charge, we
implement this procedure twice, once assuming they pay the charge, once assuming
they do not. The maximum of these indicates the decision rule.

This procedure yields decision rules as a function of the vector of state variables
X t: ĉ(X t)t, b̂(X t)t, ŝ(X t)t, â(X t)t, η̂(X t)t.

S.4.2 Simulation of profiles

Once decision rules ĉ(X t)t, b̂(X t)t, ŝ(X t)t, â(X t)t, η̂(X t)t are obtained, we simulate
a data set for 3,000 individuals. We do this as follows:

1. Initial values for wealth are set to 0.

2. Earnings draws for the first period of economic life are drawn randomly for
each individual. Using these values of the state variables and the decision
rules we can obtain optimal behavior in the first period.

3. We draw an equity price shock to apply to any equity holdings held at the
end of the period.

4. Optimal behavior, the rate of return and the inter-temporal budget constraint
yield the state variables for period 2.

5. We repeat steps (2) to (4) to obtain optimal behavior and subsequent state
variables for each age up to 100. In most time periods, individuals will
have realizations of the continuous state variables that are off this grid. Our
approach here is to solve the individual’s problem for decision rules as we do
in the solution stage.
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