
A Robust Approach to Risk Aversion:

Disentangling risk aversion and elasticity of substitution without giving

up preference monotonicity∗

Antoine Bommier François Le Grand†

September 24, 2014

We formalize the notion of monotonicity with respect to first-order stochastic dominance

in the context of preferences defined over the set of temporal lotteries. It is shown that the

only Kreps and Porteus (1978) preferences which are both stationary and monotone are Uzawa

preferences and risk-sensitive preferences introduced by Hansen and Sargent (1995). We also

extend our results to smooth recursive ambiguity models. Focusing on monotone preferences

enables a much better understanding of the role of risk aversion. As an application, we derive

new general results on the determinants of precautionary savings and asset prices in dynamic

settings.

Keywords: recursive models, monotonicity, first-order stochastic dominance, temporal

lotteries, risk aversion, ambiguity aversion, precautionary savings, asset pricing.

JEL codes: D90, D81.

1 Introduction

Since Koopmans (1960)’s article, the assumption of preference stationarity plays a central

role in the modeling of intertemporal choice under uncertainty. For many problems, it is
∗We are particularly grateful to Joel Sobel (the editor), Katsutoshi Wakai and four anonymous referees for

their detailed comments on earlier versions of the paper. We also thank Jaroslav Borovička, Rose-Anne Dana,

Sujoy Mukerji, Karl Schlag, Jean-Marc Tallon, Håkon Tretvoll and seminar participants at the Aix-Marseille

University, BI Norwegian Business School, EMLyon Business School, Paris-Dauphine University, University

of Lyon, as well as conference participants at RUD 2012, FUR XV 2012, SAET 2013, EEA 2013, NASM 2014

and ESEM 2014.
†Bommier: ETH Zurich, abommier@ethz.ch; Le Grand: EMLyon Business School and ETH Zurich,

legrand@em-lyon.com. Both authors gratefully acknowledge financial support from Swiss-Re.

1



indeed meaningful to assume that the agent’s objective is independent of past events and

of the calendar year. Preference stationarity is then required to generate time consistent

planning. The economic literature abounds in works focusing on stationary preferences. In

decision theory, Epstein (1983), Epstein and Zin (1989), Klibanoff, Marinacci, and Mukerji

(2009) have made significant contributions by extending Koopmans’ initial contribution to

more general settings.

This paper investigates how stationarity can be combined with monotonicity with re-

spect to first-order stochastic dominance (mentioned hereafter as “FSD-monotonicity”). FSD-

monotonicity is a consistency requirement between risk preferences and preferences over cer-

tain prospects. This property intuitively states that an agent cannot prefer a lottery to

another one if the latter provides better outcomes than the former in all states of the world.

As an illustrative example, consider the case of a driver who likes to drive fast, but dislikes

paying speeding fines and has to consider that he may be caught in a radar trap with prob-

ability p ∈ (0, 1). FSD-monotonicity involves assuming that the driver will neither go faster

than if p = 0 (no speed control) nor slower than if p = 1 (speed is controlled for sure). Sim-

ilarly, in a standard two-period consumption-saving problem, with uncertain second period

income distributed in an interval [ymin, ymax], FSD-monotonicity (combined with the usual

assumptions of good normality and preference convexity) stipulates that an agent will not

save more than what he would do if anticipating second period income ymin for sure, or less

than what he would do if anticipating ymax for sure. FSD-monotonicity is therefore akin to

the elimination of dominated strategies in game theory, as it rules out the possibility of an

agent taking decisions that would be dominated in all states of the world.1

Like the elimination of dominated strategies, FSD-monotonicity can be viewed as a nat-

ural requirement in the formalization of rationality. This assumption was in fact included

–under different names– in a number of early works suggesting an axiomatic construction of

choice under uncertainty. It appears in Wald (1950), Hurwicz (1951), Chernoff (1954), Milnor

(1954), Luce and Raiffa (1957), or Fishburn and Vickson (1978) among many others. Arrow

(1951, p. 429) considers FSD-monotonicity as being an “extremely reasonable” assumption.

However, more recent developments do not include FSD-monotonicity as an assumption any-

more. Though present in Chew and Epstein (1990), it does not appear in the influential works

of Kreps and Porteus (1978), Selden (1978), or Epstein and Zin (1989). In fact, to the best of

our knowledge, the assumption of FSD-monotonicity has never been discussed in works that

use a recursive approach to model rational behavior, one of the difficulties being to define

stochastic orders in the context of temporal lotteries.
1The parallel between choice under uncertainty and game theory, where the agent plays against nature,

was already emphasized in Milnor (1954).

2



Imposing FSD-monotonicity drastically restricts the set of admissible preference speci-

fications. In particular, our first representation result shows that within the whole set of

Kreps-Porteus preferences, the only ones to be stationary and FSD-monotone are the ex-

pected utility preferences à la Uzawa (1968), or the risk-sensitive preferences à la Hansen and

Sargent (1995). As a corollary, Esptein-Zin preferences are not FSD-monotone, except in the

very specific cases when they are also risk-sensitive.2 Moreover, we show that within the set

of stationary and FSD-monotone preferences, only risk-sensitive preferences enable risk pref-

erences and preferences over deterministic consumption paths to be disentangled. In addition,

our results can be extended to choice under ambiguity. Focusing on the general framework

of Jiu and Miao (2012), axiomatized by Hayashi and Miao (2011), which encompass most

popular recursive ambiguity aversion models, we can identify all the specifications which are

FSD-monotone.

Assuming FSD-monotonicity leads to focusing on frameworks where the understanding of

attitude towards risk and risk aversion becomes much more intuitive. The key feature is that

risk-sensitive preferences are well-ordered in risk aversion, not only “in the large” (i.e. in terms

of willingness to pay to eliminate all risks) but also “in the small” (i.e. in terms of willingness

to pay for marginal risk reductions). This proves to be crucial for addressing problems where

complete risk elimination is not possible, or simply not optimal. We provide three concrete

examples.

In the first application, we study the demand for insurance in an infinite-horizon economy

and show that it is increasing with risk aversion. The second application bears on precau-

tionary savings in a general infinite-horizon setup, in which income uncertainty may follow

any kind of (non necessarily stationary) stochastically monotone process. We prove that in

such a general framework, more risk averse agents save more. To our knowledge, the role of

risk aversion on precautionary savings in an infinite horizon setting has only been studied

while assuming a specific –fully parametrized– income process, so as to derive closed-form

solutions (Van der Ploeg, 1993 or Weil, 1993). Moreover, studies based on non-monotone

preferences found that no general result holds even in two-period problems (Kimball and

Weil, 2009). Therefore, assuming FSD-monotonicity makes it possible to achieve a significant

contribution to the literature on precautionary savings and to clarify the fundamental link

that exists between risk aversion and prudence. The third application relates to asset pricing

in a random endowment economy. Again, using risk-sensitive preferences enables us to opt

for a non-parametric approach, in which general results can be derived without computing

closed-forms solutions. In particular we show that, whenever consumption follows a stochasti-
2This happens to be the case when the intertemporal elasticity of substitution is equal to one, as in

Tallarini (2000), or when the risk aversion parameter is set equal to the inverse of the intertemporal elasticity
of substitution, providing the standard additive model.
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cally monotone process, risk aversion has a negative impact on the risk free rate and a positive

one on the market price for risk.

The remainder of the paper is organized as follows. In Section 2, we describe the setup,

while Section 3 introduces FSD-monotonicity. In Section 4, we present our main representa-

tion result. Section 5 shows that risk-sensitive preferences are well-ordered with respect to

risk aversion. We develop the applications in Section 6, with concluding remarks provided in

Section 7. The extension to ambiguity, which requires the introduction of a different setting,

is given in Section A of the Appendix.

2 Setting

We consider preferences defined over the set of temporal lotteries in an infinite horizon setting.

Time is discrete and indexed by t = 0, 1, . . . For the sake of simplicity, we assume that per-

period consumption is bounded and belongs to the compact set C = [c, c], where 0 < c < c.

We denote by C∞ the set of possible deterministic consumption paths, which is also compact

(by Tychonoff’s theorem).

We construct the set of temporal lotteries following Kreps and Porteus (1978) and Epstein

and Zin (1989). Wakai (2007) also provides a precise construction of a similar preference

domain. First, we define D0 as the set of all singleton subsets of C∞ (with a slight abuse of

notation, D0 = C∞). Then, for all t ≥ 1, we define Dt by induction with:

Dt = C ×M(Dt−1), (1)

where M(Dt−1) is the space of probability measures on Dt−1 endowed with the Prohorov

metric (metric of weak convergence).3 The sequence of sets (Dt)t≥0 is increasing (in the sense

that Dt ⊂ Dt+1). The space of temporal lotteries D, which is constructed as the closure of⋃
t≥0Dt, can be shown to be compact and homeomorphic to C ×M(D).4

The set Dt contains all temporal lotteries for which no uncertainty is left at date t. In a

symmetric way, we introduce sets of temporal lotteries, for which no uncertainty is resolved

during a number of initial periods. These sets play a natural role in dynamic settings, where

past consumptions appear as realized deterministic consumptions. Formally, for any τ ≥ 0,

∆τ = Cτ+1 ×M(D)

3More generally, for any metric space X, M(X) denotes the space of Borel probability measures on X
endowed with the weak convergence topology.

4The topological notions needed to define the closure as well as formal proofs are not discussed here, but
can be found in Epstein and Zin (1989).
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denotes the set of lotteries for which the consumptions between dates 0 and τ are deterministic.

By construction ∆0 = D. Although there is no natural mixture operation defined over the

whole set D, two elements (c,m) and (c,m′) of ∆τ with the same vector of initial deterministic

consumptions c ∈ Cτ+1 can be mixed as follows:

λ(c,m) + (1− λ)(c,m′) = (c, λm+ (1− λ)m′) (2)

This mixture plays a central role in the Kreps-Porteus framework, and will also be key for

defining mixture-stability in Section 3.2.2. Last, for any 0 ≤ τ ≤ t, we define:

Dτ,t = ∆τ ∩Dt (3)

the set of lotteries where consumptions between dates 0 and τ are deterministic and whose

uncertainty is resolved at date t. We thus have Dτ,t = Cτ+1×M(Dt−τ−1). A typical element

of Dτ,t will be denoted (c,m), where c = (c0, . . . , cτ ) ∈ Cτ+1 is the vector of deterministic

consumptions between dates 0 and τ , and m ∈M(Dt−τ−1).

Intuitively, an element of D0,t = Dt can be seen as describing at date 0 the life of an

agent born at date 0, and who knows that all uncertainty regarding his consumption will

be resolved before date t. When such an agent reaches date τ , his consumption (c0, . . . , cτ )

becomes known, and his (past and future) life is described by an element of Dτ,t, whose

uncertainty resolves between dates τ + 1 and t. Once the agent reaches date t, there is no

uncertainty left: formally Dt,t = D0 = C∞ is the set of deterministic consumption paths. For

a given t, the sequence of sets (Dτ,t)0≤τ≤t is decreasing with τ , which reflects that as time

goes by, the amount of remaining uncertainty shrinks.

As an illustration, Figure 1 shows simple temporal lotteries (i.e., with finite support),

represented by probability trees. For lotteries L1 and L3, all the uncertainty is revealed at

date 2, while nothing is learned at dates 0 and 1: L1, L3 ∈ D1,2. For lottery L2, the uncertainty

is completely resolved at date 1: L2 ∈ D0,1 = D1. For lottery L4, no information is revealed

at dates 0 and 1, and no uncertainty remains at date 4: L4 ∈ D1,4.

As emphasized by Kreps and Porteus (1978), temporal lotteries offer the possibility to

account for the timing of resolution of uncertainty. For example, lotteries L1 and L2 of

Figure 1 provide exactly the same distribution of consumption paths: (c0, c1, c
u
2 , c

u
3 , . . .) with

probability p1 or (c0, c1, c
d
2, c

d
3, . . .) with probability 1−p1. However, they are distinct elements

of D, as they differ with respect to the timing of the resolution of uncertainty.
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3 Monotonicity with respect to first-order stochastic dominance

The notion of FSD-monotonicity is central in our paper. It is a consistency requirement

between risk preferences and preferences over deterministic consumption paths (that we also

call “ordinal preferences”). Roughly speaking, it says that if we compare two temporal lotteries

with one providing systematically better consumption paths than the other (in the sense of

ordinal preferences) then the former should be preferred to the latter.

The assumption of FSD-monotonicity is by nature orthogonal to other assumptions that

can be made regarding the ranking of deterministic consumption paths. It just “inherits”

these assumptions and “extends” them to the set of temporal lotteries. For example, in the

economic tradition, one may want to require that a (deterministic) increase in consumption has

a positive impact on welfare. Such an assumption can be stated when discussing the desirable

properties of ordinal preferences, as will be done later on in the paper. FSD-monotonicity

will then impose –as an extension– that a random positive increase in consumption will also

be welfare improving.

Quite insightful is the parallel suggested in Milnor (1954) between choice under uncertainty

and playing a game against nature. In a game theory setting, we may distinguish two kinds of

assumptions: (i) assumptions about the ranking of payoffs (e.g. “larger payoffs are preferred”);

(ii) strategic rationality assumptions (e.g. “elimination of dominated strategies”). In our

setting, assumptions regarding the ranking of payoffs are reflected in ordinal preferences,

while FSD-monotonicity mirrors the elimination of dominated strategies.

Although the assumption of FSD-monotonicity looks fairly straightforward, its formaliza-

tion in the context of temporal lotteries has not been, to the best of our knowledge, achieved

yet. Section 3.1 presents the intuitions driving our definition. In Section 3.2, we state the

formal definition. Finally, in Section 3.3, we illustrate using a two-period saving example how

predictions may vary depending on whether FSD-monotonicity holds or not.

3.1 First-order stochastic dominance for simple temporal lotteries

Using graphical representations similar to Figure 1, we explain how a relation of preferences

over C∞ generates an intuitive notion of “first-order stochastic dominance” (FSD, hereafter)

over D, the set of temporal lotteries. For the sake of simplicity, we focus on cases where the

consumption remains constant after date 2. We also assume that ordinal preferences can be

represented by a utility function U∞ such that U∞(c0, c1, c2, c2, . . .) = c0 + 1
2c1 + 1

2c2, which is

consistent with an infinite elasticity of substitution and a constant discount factor equal to 1
2 .

5

For each path of the probability tree, we compute the associated lifetime utility, reported in
5This specification simply helps to have well-rounded numbers in computations. The argument could of

course be developed for any kind of preferences over the set of deterministic consumption paths.
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square brackets in the graphs. For example, in the lottery L5 of Figure 2, there are two possible

scenarios: The upper one gives the consumption path (3, 2, 5, 5, . . .) providing a lifetime utility

of 6.5, while the lower one generates a consumption path (3, 2, 8, 8, . . .) providing a lifetime

utility of 8.

In order to provide insights on our notion of FSD, we focus on cases in which the lotteries

to be compared are graphically represented with two probability trees that have exactly the

same structure, in other words the same ramifications occurring with the same probabilities.

One lottery is said to dominate another one if for all paths of the probability tree, it provides

a higher lifetime utility than the other lottery. For example, Figure 2 provides two examples,

in which the lottery on the left dominates the one on the right. The top example of Figure

2 is straightforward since at every date, lottery L5 pays off greater consumption levels than

L6. The bottom example illustrates the role of ordinal preferences. L7 pays larger outcomes

than L8 at dates 0 and 1 but smaller ones in all subsequent periods. However, due to the

assumed relation of ordinal preferences, it turns out that for any path of the probability tree,

lifetime utilities are larger with L7 than with L8. Thus, in all circumstances, L7 generates

better consumption paths than L8. In other words, L7 stochastically dominates L8 at the

first-order.

Figure 3 plots two elements of D2 (or equivalently of D0,2), again assuming identical

probability trees. Comparison of L9 and L10 can be made in two equivalent ways. One

possibility involves, as before, comparing the lifetime utilities associated to all paths of the

probability tree. For each of the four possible paths, L9 provides a higher lifetime utility than

L10, indicating that L9 dominates L10. The alternative possibility is to check at the first node

whether the temporal lotteries that are obtained in the different realizations of L9 (which

are elements of D1,2) dominate those obtained in L10. The comparison is straightforward.

Indeed, the upper scenarios of L9 and L10 in Figure 3 replicate the lotteries L5 and L6 shown

in the top of Figure 2, while the lower scenarios replicate the lotteries L7 and L8 that are

represented at the bottom of Figure 2. The dominance comparisons for lotteries of Figure 2

can therefore be used to get dominance comparisons regarding the lotteries in Figure 3. We

can generalize this method to a recursive approach, in which we determine the dominance

between elements of Dτ−1,t by looking at the dominance of all realizations at date τ , which

are elements of Dτ,t. The recursion ends for τ = t, when elements of Dt,t are deterministic

consumption paths, that can be compared using ordinal preferences. We formally present this

recursive approach in Section 3.2.1.

We can also formalize the above reasoning in terms of mixture. Indeed, we have L9 =

p0L5 + (1− p0)L7 and L10 = p0L6 + (1− p0)L8, with L5 dominating L6 and L7 dominating

L8. Lotteries L9 and L10 can thus be viewed as two binary lotteries, such that the outcomes
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of L9 (which are lotteries) dominate those of L10. A well-defined notion of FSD should thus

indicate that L9 dominates L10. More generally, FSD should fulfill an assumption of “mixture-

stability”. In Section 3.2.2, we show how such a property may be used to define FSD in a

concise but non-constructive way.

From a dynamic problem perspective, choosing L9 rather than L10 may be viewed as

making a choice that generates continuations L5 or L7 (depending on which states of the world

realizes) rather than a choice generating L6 or L8. If L5 dominates L7 and L6 dominates L8,

a preference for L9 over L10 is then consistent with the elimination of dominated strategies.

It is worth emphasizing that the notion of FSD does not involve looking at the distribution

of lifetime utilities in a way that would make abstraction of the structure of the probability

tree, and in particular of the timing of resolution of uncertainty. In fact, prior to comparing

lifetime utilities, one must represent the temporal lotteries to be compared with probability

trees having exactly the same structure (that is the same nodes and the same probabilities),

which is always possible with simple temporal lotteries. For example, in order to compare

lotteries L1 and L2, or L1 and L3, one should not use the representations shown in Figure

1 that involve different probability trees, but the equivalent ones shown in Figures 4 and 5,

with which comparison becomes straightforward. Our formal definition will not depend on

the choice of a particular graphical representation.

Importantly, assuming that preferences are FSD-monotone is not constraining risk aversion

or preferences for the timing of resolution of uncertainty. In fact temporal lotteries that assume

the same distribution of consumption paths, but differ because of the timing of uncertainty

resolution, are in general not comparable in terms of FSD. An example is provided in Figure

5, in which L1 and L2 are not comparable in terms of FSD dominance (unless uu = ud), in

the sense that neither L1 nor L2 dominates the other one. An agent with FSD-monotone

preferences might very well prefer L1 to L2 (preference for late resolution of uncertainty) or

L2 to L1 (preference for early resolution of uncertainty).

3.2 Formal definition of FSD-monotonicity

In order to define FSD-monotonicity, we need to formalize how a relation of ordinal preferences

�0 on C∞ generates a natural notion of stochastic dominance on the set D of temporal

lotteries. As previously explained, we provide two ways of doing so. In Section 3.2.1, we

recursively build FSD using intuitions provided in Section 3.1. Section 3.2.2 suggests an

(equivalent) non-constructive definition based on a closure strategy. As detailed in Section

3.2.3, this latter approach helps emphasizing the parallel between our notion of FSD, which

applies to temporal lotteries, and the usual one found in atemporal settings. It will also prove

to be useful to define a notion of second-order stochastic dominance for temporal lotteries
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(see Section 5.2.2).

We start by defining some standard or intuitive notions on binary relations that will be

helpful for our constructions of the FSD relationship.

Preamble: binary relations. Formally speaking, a binary relation R on a set Y is a

subset of Y 2, where the notation xRy means (x, y) ∈ R. Since binary relations are subsets

of Y 2, we can use the usual notions of intersection, union or inclusion. For example R1 ⊂ R2

means that xR1y ⇒ xR2y (the relation R2 is then an “extension” of R1), while x(R1 ∩
R2)y means (xR1y and xR2y). Moreover, if Y is a topological space, a binary relation R

is continuous if R is a closed subset of Y 2 (endowed with the product topology). Given a

mixture operation on Y , the relation R will be said to be “mixture-stable” if, for all λ ∈ [0, 1],

x1Ry1 and x2Ry2 implies ((1 − λ)x1 + λx2)R((1 − λ)y1 + λy2).6 We will use the acronym

“RTCMS” for “reflexive, transitive, continuous and mixture-stable”.

3.2.1 A constructive definition of first-order stochastic dominance

A preference relation �0 on the set C∞ of deterministic consumption paths induces a natural

ranking of degenerate lotteries. We construct an associated notion of FSD in two steps: (i)

we define by induction relations FSDt that apply to elements of Dt; (ii) with a continuity

argument, we use these relations FSDt to define FSD over the whole set D.

Definition 1 (First-order stochastic dominance for lotteries in Dt) Consider a pref-

erence relation �0 on C∞. For any t ≥ 0, we define the relation of stochastic dominance

FSDt on Dt as follows:

1. (starting point of the recursion) FSDt,t =�0;

2. (backward induction on τ to define FSDτ−1,t from FSDτ,t) For any 1 ≤ τ ≤ t and any

((c,m), (c′,m′)) ∈ (Dτ−1,t)
2 = (Cτ ×M(Dt−τ ))2, we have (c,m)FSDτ−1,t(c

′,m′) if and

only if for all continuous functions φ : Cτ ×Dt−τ (= Dτ,t)→ R such that yFSDτ,ty
′ ⇒

φ(y) ≥ φ(y′), we have:
ˆ
Dt−τ

φ(c, x)dm(x) ≥
ˆ
Dt−τ

φ(c′, x)dm′(x). (4)

3. (FSDt defined as the terminal point of the recursion) FSDt = FSD0,t.
6When the relation R is reflexive and transitive, mixture-stability is equivalent to the independence axiom

of von Neumann-Morgenstern. However, we will consider binary relations over the set of temporal lotteries,
where not all elements can be mixed. Mixture-stability is then an extension of the temporal independence
axiom of Kreps and Porteus (1978).
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The intuitions lying behind Definition 1 have been explained in Section 3.1. Note that

the relation FSDτ−1,t is an extension of FSDτ,t in the sense that FSDτ,t ⊂ FSDτ−1,t. By

induction, we eventually obtain that for any t and any τ ≤ t, we have FSDτ,t ⊂ FSDt.

We can analogously check that FSDt+1 is an extension of FSDt. Finally, we can show by

induction that the relations FSDτ,t (and hence FSDt) are transitive.

We can now provide our definition of FSD over the whole set of temporal lotteries.

Definition 2 (Stochastic dominance for temporal lotteries) We define the first-order

stochastic dominance relation FSD over D as the topological closure of ∪t≥0FSDt.

3.2.2 A non-constructive definition of first-order stochastic dominance

In Section 3.1, we explained when discussing lotteries L9 and L10 of Figure 3 that any well-

defined notion of FSD should fulfill an assumption of mixture-stability. We now prove that

the relation FSD provided in Definition 2 is the smallest mixture-stable relation that extends

the incomplete order induced by �0. We first formally define mixture-stability for temporal

lotteries, accounting for the fact that only elements admitting identical deterministic vectors

of initial consumptions can be mixed, as in equation (2). Formally:

Definition 3 (Mixture-stability for temporal lotteries) A binary relation R on D is

mixture-stable if for all τ ≥ 0, λ ∈ (0, 1), (c1, c2) ∈ (Cτ+1)2 and (m1,m
′
1,m2,m

′
2) ∈M(D)4:

(c1,m1)R(c2,m2)

(c1,m
′
1)R(c2,m

′
2)

}
⇒ (c1, λm1 + (1− λ)m′1)R(c2, λm2 + (1− λ)m′2).

We can now state the following result:

Lemma 1 (FSD as a closure of ordinal preferences) The relation FSD introduced in

Definition 2 is the smallest RTCMS extension of �0.

Proof. The proof, detailed in Appendix B.1 is very much inspired by the contribution of

Dubra, Maccheroni and Ok (2004). Actually, it works just like that of Lemma 2, detailed

below, which –restricted to atemporal settings– may be considered as a direct application of

their paper. However, as the set of temporal lotteries is not a mixture space, proving Lemma

1 involves establishing a similar result to the one of Dubra, Maccheroni and Ok (2004) (also

based on the hyperplane separation theorem) that applies to binary relations that are not

necessarily transitive or reflexive (Lemma 6 in the Appendix).

Definition 2 of FSD takes a “bottom-up approach”: we start from �0 and construct an

increasing sequence of binary relations with the objective to comply with the mixture-stability

10



property. Lemma 1 suggests an equivalent “top-down” approach, in which FSD could be

introduced as the “smallest” binary RTCMS relation extending �0.7

3.2.3 Parallel with the notion of FSD in atemporal settings

In order to provide further insights on the link between our constructive and non-constructive

approaches, as well as to emphasize the parallel with the usual notion of FSD found in

atemporal settings, we state the following result:

Lemma 2 (FSD in atemporal settings) Consider a compact metric ordered space (X,≥).

Denote by M(X) the set of probability measures over X. The relation of FSD on M(X),

denoted FSDX , can be defined in three equivalent ways:

1. (cumulative distribution function approach) ∀(m,m′) ∈M(X)2:

mFSDXm′ ⇐⇒ ∀y ∈ X, m({x ∈ X|x ≥ y}) ≥ m′({x ∈ X|x ≥ y}). (5)

2. (dual approach) ∀(m,m′) ∈ M(X)2, we have mFSDXm′, if for all continuous non-

decreasing functions φ : X → X, the following inequality holds:
ˆ
X
φ(x)dm(x) ≥

ˆ
X
φ(x)dm′(x).

3. (closure approach) The relation FSDX is the smallest RTCMS extension of ≥.8

Proof. Equivalence between 1 and 2 was shown by Fishburn (1974). To show that 2 ⇔ 3,

denote by Ω the set of RTCMS extensions of ≥. It is straightforward to check that FSDX ,

when defined as in point 2, belongs to Ω. It remains to be shown that it is the smallest element

of Ω. From Dubra, Maccheroni and Ok (2004), we know that for any R ∈ Ω there exists a

class of continuous utility functions UR such that m1Rm2 ⇔ Em1 [u] ≥ Em2 [u] for all u ∈ UR.
Denote R0 the smallest element of Ω, given by R0 = ∩R∈ΩR, to which corresponds the class

UR0 = ∪R∈ΩUR. Since any R ∈ Ω extends ≥, all classes UR must contain non-decreasing

functions. Therefore, UR0 is included in the set of all continuous non-decreasing functions.

This means UR0 ⊂ UFSDX implying FSDX ⊂ R0.

Lemma 2 provides different characterizations of FSD in atemporal settings. When working

with temporal lotteries, the first two characterizations look problematic as realizations of
7We qualify this approach of non-constructive, as FSD is obtained as the intersection of elements in a set

of binary relations on D (i.e., a set of subsets of D2), whose existence is granted by the axiom of the power
set.

8As it is standard, ≥ also denotes (with a slight abuse of notation) the order on the set of degenerate
lotteries.
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temporal lotteries are still random objects, for which there is no natural ranking.9 In the

constructive definition, we circumvented this difficulty by using a recursive approach, making

it possible to extend step by step the incomplete order induced by �0. The other route,

involves using the third characterization, based on the closure approach, which can be readily

applied to temporal lotteries, once the notion of mixture-stability is properly defined. This

is the idea of our non-constructive definition. Lemma 1 shows that just like in atemporal

settings, both routes lead to the same notion of FSD.

3.2.4 FSD-monotonicity

Having explained how a preference relation �0 on C∞ generates an FSD relation on temporal

lotteries, we now state our definition of FSD-monotonicity.

Definition 4 (FSD-monotonicity) Consider a preference relation � defined on D. Denote

�0 the restriction of � to C∞ and FSD the first-order stochastic dominance relation obtained

from Definition 2. The preference relation � is said to be FSD-monotone if and only if we

have:

∀((c,m), (c′,m′)) ∈ D2, (c,m)FSD(c′,m′)⇒ (c,m) � (c′,m′).

The above definition states that a preference relation is FSD-monotone whenever first-

order dominating lotteries are preferred. However FSD is derived from �0, the restriction of

� to the set of deterministic consumption paths. FSD-monotonicity is therefore a consistency

requirement between ordinal and risk preferences. Moreover, since by construction � extends

�0, a consequence of Lemma 1 is that a continuous preference relation which is mixture-stable

is necessarily FSD-monotone. The reciprocal however is false.10

In order to illustrate the interest of assuming FSD-monotonicity, we consider below a two-

period saving problem and emphasize the unintuitive findings that may be obtained when

using non FSD-monotone preferences.

3.3 FSD-monotonicity and the elimination of dominated-strategies in a
two-period saving problem

Consider a two-period economy. At date 0, agents receive the certain income y0 that they

allocate between consumption and savings. At date 1, there are two states of the world, h

and l that determine both the date 1 income (equal to yh1 or yl1) and the gross return of saving

(equal to Rh or Rl).
9One cannot use the ranking generated by risk preferences, as the objective is precisely to have a notion of

FSD that only depends on preferences over deterministic consumption paths.
10In atemporal settings, rank dependent expected utility and cumulative prospect theory provide examples

of preferences which are FSD-monotone but not mixture-stable.
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Throughout this section, we assume that preferences over deterministic consumption paths

are represented by U∞(c0, c1) = (cρ0 + βcρ1)
1
ρ , where 1 > ρ 6= 0 and β > 0. Risk preferences

will either be unspecified, though assumed to be FSD-monotone (for Lemma 3), or preferences

à la Esptein-Zin (for Lemma 4 and Figure 6).

In the presence of uncertainty, agents have to choose their savings before observing whether

state h or l will occur. We denote by c∗0 the optimal consumption at date 0 and s∗ the optimal

amount of savings. The budget constraints can be expressed as follows:

y0 − s∗ = c∗0 ≥ 0,

yκ1 +Rκs
∗ = c∗1,κ ≥ 0 for κ = h, l,

where c∗1,κ denotes date 1 consumption if state κ occurs.

For κ = h, l, denote by sκ the amount of savings that the agents would choose if they

knew that the state κ would occur for sure. We have sκ =
y0−yκ1 (βRκ)

1
ρ−1

1+Rκ(βRκ)
1
ρ−1

. Using a game

theory terminology, the levels sh and sl are the (state-specific) agents’ best responses.

Lemma 3 (Savings with FSD-monotone preferences) Consider the saving problem de-

scribed above. If agents have FSD-monotone preferences, then min(sh, sl) ≤ s∗ ≤ max(sh, sl).

Proof. Since ordinal preferences are strictly convex, choosing s∗ < min(sh, sl) is dominated

by the choice of min(sh, sl) in both states of the world. Analogously, choosing s∗ > max(sh, sl)

is dominated by the choice of max(sh, sl).

This intuitive result does not hold with non FSD-monotone preferences. Indeed, let us

now assume that agents have Epstein-Zin preferences, represented by:

UEZ(c0, c̃1) =
(
cρ0 + β (E[c̃α1 ])

ρ
α

) 1
ρ
, (6)

where E[·] is an expectation operator and α 6= 0 a parameter driving risk aversion. The

optimal amount of savings sEZ is the unique maximum of the following agents’ program:

sEZ = arg max
s∈(−min(

yl1
Rl
,
yh1
Rh

),y0)

UEZ(y0 − s, ỹ1 + R̃s) (7)

where the notation ỹ1 and R̃ denote the random income and asset returns.

Lemma 4 (Savings with Epstein-Zin preferences) Consider the saving problem descri-

bed in equation (7). If ρ 6= α, there exist values of Rκ and yκ1 (for κ = h, l) for which agents

end up choosing a dominated saving strategy sEZ /∈ [min(sh, sl),max(sh, sl)].
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Proof. Assume yh1 6= yl1 and Rκ = 1
β (

yκ1
y0

)1−ρ in state κ = h, l. In that case sk = sl = 0, so

that the only non-dominated strategy is s = 0. However, we have

d

ds

(
logUEZ(y0 − s, ỹ1 + R̃s)

)∣∣∣
s=0

=
yρ−1

0

UEZ(y0 , ỹ1)

(
E[z̃1− ρ

α ]

E[z̃]1−
ρ
α

− 1

)
, (8)

where z̃ = ỹα1 . Since ρ 6= 0 and ρ 6= α, the function x 7→ x1− ρ
α is either strictly concave or

strictly convex. Using Jensen inequality, the derivative (8) cannot be equal to zero. Thus

s = 0 is not optimal for the agent.

Lemma 4 shows that an agent endowed with Epstein-Zin preferences may choose dom-

inated saving strategies. The proof uses the fact that both income and asset returns are

random. However, when the inverse of intertemporal elasticity of substitution is smaller than

one and smaller than the coefficient of relative risk aversion, similar examples of dominated

choices can be obtained in a simpler consumption-saving problem where only income is ran-

dom. Actually, whenever the income risk is large enough, or risk aversion strong enough, an

agent with such Epstein-Zin preferences can be shown to save more than what he would do in

the worst case. In others words, the agent who normally earns yl1 but who is told that he might

receive a large positive bonus (yh1 −yl1) at the end of the year may react to this information by

saving more! Figure 6 illustrates such an unintuitive saving behavior.11 In fact, the possibility

of receiving a positive bonus in the second period generates uncertainty regarding the second

period utility. An increase in savings is then “rationally” chosen to reduce, in relative terms,

this uncertainty. The extent to which this relative uncertainty reduction regarding second

period utility is valuable is open to question. One might argue that an anxious agent may be

happier to have less uncertainty left for the future. But should that lead the agent to take

actions that lower welfare in all circumstances? Such an unappealing feature would be ruled

out by the assumption of FSD-monotonicity.

This example illustrated in Figure 6 also helps to explain why understanding the role of

risk aversion may be difficult when using Epstein-Zin preferences. When α = ρ (i.e., in the

additive model), preferences are FSD-monotone and optimal savings sEZ lie in the interval

[sh, sl]. Increasing risk aversion (i.e., decreasing α) first raises savings, which get closer to sl,

the optimal strategy in the bad state. Increasing further the degree of risk aversion eventually

leads the agent to take dominated strategies sEZ > sl. For extreme degrees of risk aversion

(i.e. α→ −∞), the agent only cares about the bad state and thus chooses sEZ → sl. The link

between risk aversion and saving behavior is therefore non-monotonic. This occurs because

the agent opts for dominated strategies for some degrees of risk aversion. Assuming FSD-
11The parameters used to draw the figure are ρ = 1

2
= −α, Rl = Rh = β = 1, y0 = 100, yl1 = 1, yh1 = 289.

States h and l occur with equal probabilities.
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monotone preferences, Proposition 6 provides a much more intuitive monotonic pattern, in

which savings increase with risk aversion.

4 Monotone Kreps-Porteus recursive preferences

4.1 Definition of Kreps-Porteus recursive preferences

Our paper explores the set of stationary preferences defined on D that fits into the framework

introduced by Kreps and Porteus (1978). We restrict our attention to preferences for which,

in the absence of uncertainty, greater consumption provides more utility. In other words,

ordinal preferences are assumed to be monotonic in the usual sense. Moreover, for technical

reasons, we introduce some differentiability requirements, and assume that, when looking at

deterministic consumption paths, the marginal rate of substitution between the consumption

at two different dates is always well-defined and finite. This leads to the following formal

definition:

Definition 5 (Kreps-Porteus recursive preferences) A preference relation is said to be

Kreps-Porteus recursive (henceforth KP-recursive) if it can be represented by a utility function

U :D → R fulfilling the following recursion:

U(c0,m) = W (c0, Em[U ]), (9)

where Em[·] denotes the expectation with respect to the probability measure m and W :

R+ × Im(U) → Im(U) is a twice continuously differentiable function –called aggregator–

with positive derivatives Wx and Wy.12

Equation (9) reflects both the fact that we consider a Kreps-Porteus framework and the

assumption of preference stationarity in the sense of Koopmans (1960). The positivity require-

ments on the derivativesWx andWy are necessary conditions for preferences over deterministic

consumption paths to be monotonic with well-defined marginal rates of substitution.

By definition, a given KP-recursive preference relation must admit at least one utility

representation fulfilling (9). But, not all utility representations need to fulfill (9). The re-

mark below makes the link with other popular representations of KP-recursive preferences

formulated in terms of certainty equivalents.

12Im(U) denotes the image of U .
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Remark 1 Consider a preference relation � on D represented by a utility function U : D → R
fulfilling the following recursion:

U(c0,m) = W (c0, φ
−1Em [φ(U)]), (10)

where φ : Im(U) → R is a twice differentiable function with a positive derivative and W :

R+ × Im(U)→ Im(U) is a twice continuously differentiable with positive derivatives.

Then, the preference relation � is KP-recursive in the sense of Definition 5.

Proof. Since φ is increasing, the utility function V = φ(U) represents the same prefer-

ence relation as U . Moreover, V fulfills the recursion (9) with the aggregator Ŵ (x, y) =

φ
(
W (x, φ−1(y))

)
, which is twice continuously differentiable with positive derivatives Ŵx and

Ŵy. Preferences represented by V (and by U) are therefore KP-recursive.

The most common KP-recursive preferences are those represented by additive separable

utility functions:

U(c0,m) = (1− β)u(c0) + βEm [U ] ,

where 0 < β < 1 and u : C → [0, 1] is a twice continuously differentiable function with u′ > 0.

Another example is related to Uzawa (1968) utility function with:13

U(c0,m) = a(c0) + b(c0)Em [U ] . (11)

These preferences are KP-recursive, provided that technical conditions on the functions a(·)
and b(·) are introduced to guarantee that the aggregator is differentiable with positive deriva-

tives.

One of the most popular examples of KP-recursive preferences is the Epstein-Zin isoelastic

preferences, usually represented by utility functions fulfilling the following recursion:14

U(c0,m) =



[
(1− β)cρ0 + β(Em[Uα])

ρ
α

] 1
ρ if 0 6= ρ < 1, α 6= 0,

exp
(

(1− β) log(c0) + β
α log(Em[Uα])

)
if ρ = 0, α 6= 0,

[(1− β)cρ0 + β exp(ρEm[log(U)])]
1
ρ if 0 6= ρ < 1, α = 0,

exp ((1− β) log(c0) + βEm[log(U)]) if ρ = α = 0,

(12)

with 0 < β < 1. The fact that such utility functions represent KP-recursive preferences stems

from Remark 1 above.
13This utility function represents preferences of the expected utility kind and was introduced in continuous

time by Uzawa (1968), and discussed further in discrete time by Epstein (1983).
14The cases α = 0 or ρ = 0 are limit cases of the general one. We provide their formulations to simplify the

comparison with risk-sensitive preferences introduced in equation (13).
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Our purpose in the current paper is to look for classes of KP-recursive preferences that

are FSD-monotone. We will prove that this leads to preferences that can be represented by a

Uzawa utility function as in (11) or by the following utility function:

U(c0,m) =

{
(1− β)u(c0)− β

k log(Em
[
e−kU

]
) if k 6= 0,

(1− β)u(c0) + βEm[U ] if k = 0,
(13)

for some function u with positive derivative and a constant β < 1. This specification was

introduced by Hansen and Sargent (1995) as a tractable way of having a risk-adjusted measure

of cost in a problem of optimal control. In Hansen, Sargent and Tallarini (1999), such a

specification was used to represent the preferences of robust decision makers.15 Due to the

parallel between robustness and risk-sensitivity analysis, which is discussed in Hansen, Sargent

and Tallarini (1999), these preferences might indifferently be called robust preferences or risk-

sensitive preferences. Throughout the paper, we use the latter terminology (risk-sensitive

preferences), which is more commonly used in the recent literature, as for example in the

survey of Backus, Routledge and Zin (2005).16

Note that choosing u(c) = log(c) in equation (13) implies that V = exp(U), which rep-

resents the same preferences as U , fulfills the recursion (12) with ρ = 0 and α = −k. Thus,

when the intertemporal elasticity of substitution is equal to one, Epstein-Zin and risk-sensitive

preferences coincide with each other, as already noticed by Tallarini (2000). The class of risk-

sensitive preferences also intersects with Epstein-Zin’s when k = 0 and u is isoelastic. This

corresponds to the standard additively separable model with a constant intertemporal elas-

ticity of substitution. In all other cases, risk-sensitive preferences differ from Epstein-Zin’s.

4.2 Representation result

Our first representation result shows that imposing recursivity and FSD-monotonicity readily

leaves us with a small set of KP-recursive preferences.

Proposition 1 (Representation result) Consider a KP-recursive preference relation �.
The following statements are equivalent:

1. the preference relation � is FSD-monotone;

2. the preference relation � can be represented by a utility function fulfilling one of the

following recursive equations:
15“Robust agents” worry about possible model misspecifications and account for them in their decisions.

Hansen and Sargent (2007b) provide a self-contained description of robustness applications in economics.
16The terminology robust preferences is now used more often to refer to max-min preferences.
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(a) (Uzawa case)

U(c0,m) = a(c0) + b(c0)Em[U ], (14)

where a, b : C → [0, 1] are twice continuously differentiable functions such that

a(c) = 0, a(c) + b(c) = 1 and for all x ∈ C, a′(x) > 0, a′(x) + b′(x) > 0 and

0 < b(x) < 1.

(b) (Risk-sensitive case)

U(c0,m) = (1− β)u(c0)− β

k
log
(
Em[e−kU ]

)
, (15)

where 0 < β < 1, k 6= 0 and u : C → R is a twice continuously differentiable

function with a strictly positive derivative.17

Moreover, to any function a(·) and b(·) or any function u(·) and scalars β and k that fulfill

the above conditions, corresponds a unique KP-recursive preference relation.

Proof. We provide a complete proof in the Appendix. The last statement of the proposi-

tion, about existence and uniqueness, relies on a standard fixed-point argument. We outline

below the main intuitions underlying the proof 1⇔ 2.

Intuition for the proof that 2 ⇒ 1. The shortest way to prove (2 ⇒ 1) is to show

that Uzawa and risk-sensitive preferences are mixture-stable. The proof given in Appendix

B.2.3 follows this path. However, gaining a better intuition of why these preferences are

FSD-monotone involves showing that they are monotone with respect to FSDt for all t ≥ 0.

Let t ≥ 0 and a temporal lottery (c0,m) ∈ Dt. First, consider the Uzawa case. To make in-

tuitions more transparent, we specify the lifetime consumption process denoted (c0, . . . , c̃t, . . .).

The consumption c̃i of date 1 ≤ i ≤ t is uncertain from date 0 point of view and the uncer-

tainty is resolved at date i. The uncertainty for consumptions after date t is also resolved at

date t, since (c0,m) ∈ Dt. The associated utility is denoted U(c0, . . . , c̃t, . . .) with a slight

abuse of notation. Using the linearity of the expectation operator, iterating forward the

recursion yields:

U(c0, . . . , c̃t, . . .)=E0

. . . Et−1

 ∞∑
i=0

a(c̃i)

i−1∏
j=0

b(c̃j)

 . . .
= E0

 ∞∑
i=0

a(c̃i)
i−1∏
j=0

b(c̃j)

, (16)

where Eτ [·] (0 ≤ τ ≤ t − 1) is the expectation conditional on the information available
17Remark that in the limit case when k approaches zero, the recursion (15) converges to U(c0,m) = (1 −

β)u(c0) + βEm[U ], which is also a particular case of (14), providing the class of additively separable utility
functions.
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at date τ (i.e., the σ-algebra generated by the process c̃i for 0 ≤ i ≤ τ).18 The second

equality in (16) stems from the law of iterated expectations. FSD-monotonicity then becomes

straightforward, since the utility U(c0, . . . , c̃t, . . .) is expressed as the expectation of lifetime

utilities given by
∑∞

i=0 a(ci)
∏i−1
j=0 b(cj). We obtain this expression with a single expectation

operator since Uzawa preferences belong to the expected utility framework, in which the

reduction of compound lotteries holds.

Second, consider the risk-sensitive case. For any τ ≥ 0, we denote by Uτ = (1−β)u(cτ )−
β
k log

(
Eτ [e−kUτ+1 ]

)
the (forward-looking) utility given information available at date τ . We

also define V0 = U0 and for any τ > 0, Vτ = (1−β)
∑τ−1

i=0 β
iu(ci)+βτUτ , which can be viewed

as the (backward-forward looking) utility given information available at date τ . We have:

Vτ = (1− β)
τ∑
i=0

βiu(ci)−
βτ+1

k
log
(
Eτ [e−kUτ+1 ]

)
= −β

τ+1

k
log

(
Eτ [e

− k
βτ+1 Vτ+1 ]

)
.

When τ ≥ t, there is no uncertainty left since we consider elements of Dt, and Vτ = (1 −
β)
∑∞

i=0 β
iu(ci). Thus, V0 (and hence U0) can be obtained as the final point of the backward

recursion given by: Vt = (1− β)
∑∞

i=0 β
iu(ci),

Vτ = φ−1
τ Eτ [φτ (Vτ+1)] for any 0 ≤ τ ≤ t− 1.

(17)

where φτ is the function given by φτ : x 7→ −βτ+1

k e
− k
βτ+1 x. Since functions φτ are increasing,

FSD-monotonicity holds with lifetime utilities given by (1− β)
∑∞

i=0 β
iu(ci).

Intuition for the proof that 1⇒ 2. For the sake of simplicity, we start with a two-period

setting. Consider preferences over the set of certain×uncertain consumption pairs that are

FSD-monotone, and like KP-recursive preferences, represented by:

(c0, c̃1) ∈ C ×M(C) 7→ U(c0, c̃1) = W (c0, E0[u(c̃1)]). (18)

Assume for simplicity, that we can find c∗0 such that for any (c0, c1) there exists η(c0, c1),

which makes (c0, c1) and (c∗0, η(c0, c1)) equally preferable.19 We can then extend U , initially
18In the remainder of the paper, we will use either the expectation Em[·] with respect to the measure m or

the expectation Eτ [·] with respect to the natural filtration generated by the consumption process, depending
on whether the consumption process is made explicit or not.

19In general, there is no such c∗0, but working locally on small neighborhoods, we can assume its existence.
The proof contains a technical part mapping local results into global ones.
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defined over C ×M(C) in (18) to M(C × C) by setting:

(c̃0, c̃1) ∈M(C × C) 7→ U(c̃0, c̃1) = U(c∗0, η(c̃0, c̃1)). (19)

Preferences represented by (19) are FSD-monotone. Moreover, due to (18), they fulfill the von

Neuman-Morgenstern independence axiom and thus admit an expected utility representation.

We also know that preferences over lotteries on second period consumption are independent

of first period consumption and represented by E0[u(c̃1)]. Using Theorem 5.6 of Keeney and

Raiffa (1993), preferences over M(C × C) can be represented by:

U(c̃0, c̃1) = E0[a(c̃0) + b(c̃0)u(c̃1)], (20)

for some functions a(·) and b(·). Equations (18) and (20) then provide two utility represen-

tations of the same preference relation over C ×M(C). It is thus possible to go from one to

the other by an increasing transformation. Thus, there must exist an increasing function φ

such that:

W (c0, E0[u(c̃1)]) = φ (E0[a(c0) + b(c0)u(c̃1)]) .

FSD-monotonicity therefore implies that the aggregator W (x, y) must be such that:

W (x, y) = φ(a(x) + b(x)y). (21)

To complete the proof, we apply twice the same reasoning as above. Once for lotteries with

an uncertain third period consumption, (i.e. of the type (c1, c2, c̃3) ∈ C2 ×M(C)) and again

for lotteries with an uncertain fourth period consumption (i.e. of the type (c1, c2, c3, c̃4) ∈
C3×M(C)). In both cases, FSD-monotonicity implies utility representations similar to (20).

However, due to the recursivity assumption, preferences over C2×M(C) are also represented

by W (c1,W (c2, E0[u(c̃3)])) and those over C3 × M(C) by W (c1,W (c2,W (c3, E0[u(c̃4)]))).

This ends up providing a set of restrictions similar to (21) which are all together only com-

patible with the Uzawa or the risk-sensitive representation.

4.3 Discussion

According to Proposition 1, only Uzawa and risk-sensitive preferences are both KP-recursive

and FSD-monotone. In this section, we provide more insights on this result and also discuss

some properties of these preferences.
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4.3.1 Stationarity and monotonicity: two different recursivity requirements

Preference stationarity and FSD-monotonicity constrain preferences in two different ways. On

the one hand, following the second step of the proof of Proposition 1, one can conjecture that

FSD-monotonicity imposes KP-recursive preferences to be represented by the ending point

V0 of the following backward recursion:V∞ = V∞(c0, c1, . . . , ct, . . .),

Vτ = φ−1
τ (Eτ [φτ (Vτ+1)]),

(22)

where V∞ are lifetime utilities and the monotonic function φτ drives the agent’s risk aversion

with respect to the distribution of lifetime utilities.20 A temporal lottery can then be viewed

as a compound lottery, whose payoffs are the lifetime utilities V∞. This compound lottery is

evaluated by a backward induction, in which at each step τ , the uncertain future is replaced by

its certainty equivalent computed with the function φτ . The way these certainty equivalents

are computed may depend on the date τ because, in the Kreps-Porteus framework, agents are

not necessarily indifferent to the timing of uncertainty resolution. Conversely, any preferences

defined by the recursion (22) with monotonic functions φτ would be FSD-monotone. Without

further assumptions about φτ , such preferences may be non-stationary for two reasons: (i)

the function φτ may fail to compensate for time preferences (see the comment at the end

of Section 4.3.2), which would generate a “calendar time dependence”; (ii) Vτ depends on

consumptions prior to date τ , which may cause preferences to depend on past history.

On the other hand, preference stationarity in the sense of Koopmans (1960) requires the

utility function Ut to follow a recursion of the form:

Ut = W (ct, Et[Ut+1]), (23)

where the utility Ut at date t is independent from consumptions prior to date t, and where

the aggregator W is independent of the date t.

Recursions (22) and (23) respectively associated to FSD-monotonicity and stationarity

are only compatible for Uzawa and risk-sensitive preferences. A more general framework

would need to depart from FSD-monotonicity (as in Epstein and Zin, 1989, with the un-

pleasant consequences highlighted in Section 3.3) or from stationarity. In the latter case,

we could for example still impose FSD-monotonicity, but accept a weaker notion of recur-

sivity, where the aggregator in (23) could depend on t. In a dynamic framework, this would

involve assuming history independence, time consistency and FSD-monotonicity but would
20Formally, the recursion (22) only makes it possible to define V0 on

⋃
t≥0Dt. Extension to D would require

continuity arguments to be considered in an approach similar to that of Streufert (1990).
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make time-dependent evaluations possible. The frameworks of Pye (1973) and Van der Ploeg

(1993) fit in that category. They correspond to the case where V∞ = (1 − β)
∑∞

i=0 β
iu(ci)

and φτ (x) = − 1
ke
−kx (independent of τ) in the recursion (22). More generally, all cases where

V∞ = (1 − β)
∑∞

i=0 β
iu(ci) and the φτ are exponential (but possibly depending on τ) would

correspond to FSD-monotone preferences fulfilling a weaker notion of recursivity, implying

history independence (but allowing for calendar time dependence).

We could further weaken the recursivity requirement and allow for history dependence,

while keeping sufficient structure to maintain reasonable tractability. A solution could be to

consider an additive function V∞ for lifetime utilities, together with any kind of increasing

functions φt. Though generating some history dependence, the history could be summarized

in a single variable, the stock of accumulated welfare. Economic problems with such pref-

erences could still be addressed using standard dynamic programming techniques with the

introduction of only one additional state variable.21

4.3.2 Preference for the timing

As explained in Kreps and Porteus (1978), concavity (or convexity) with respect to the second

argument of the aggregator introduced in Definition 5 dictates: (i) the preference for the

timing of uncertainty resolution and (ii) whether risk aversion is increasing or decreasing

with time distance. A convex aggregator (Wyy > 0) is associated with preferences for an

early resolution of uncertainty and a greater risk aversion for lotteries resolving in the distant

future. Conversely, a concave aggregator (Wyy < 0) generates preferences for a late resolution

of uncertainty and a lower risk aversion for lotteries resolving late.

Uzawa preferences assume a linear aggregator and therefore exhibit no preferences for

the timing. Risk-sensitive preferences allow for preferences for the timing. Indeed, define

V (c,m) = − e−kU(c,m)

k . The utility function V represents the same preferences as U and

fulfills the recursion (9) with the aggregator W (x, y) = − 1
ke
−k(1−β)u(x)(−ky)β . We obtain

Wyy(x,y)
Wy(x,y) = k(1− β)(−ky)−1, which has the same sign as k. Agents, who are more risk averse

than in the standard additive model (whenever k > 0) have preferences for an early resolution

of uncertainty, while the reverse holds when k < 0. When k = 0, agents are indifferent to

the timing of uncertainty resolution. To gain a better insight, one may also notice that if

preferences were defined on a smaller domain, so that preferences with zero or negative time

preferences (i.e., β ≥ 1) could be considered, we would obtain the opposite relation between

risk aversion and preference for the timing.22 Time preference, risk aversion and preference
21Bommier (2008) considers such a possibility in the expected utility framework (i.e., with functions φt

independent of t) to study life-cycle behavior.
22The case where β ≥ 1 can for example be considered when assuming that all consumption paths converge

to an exogenous c∗ within a finite amount of time. Risk-sensitive preferences can still be defined by the
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for the timing appear therefore to be intertwined.

The above interrelation can be interpreted as an intuitive consequence of the assumptions

of stationarity and FSD-monotonicity. Let us consider an agent comparing temporal lotteries

that provide the same consumption c during N periods, but may differ afterwards. On the

one hand, with stationary preferences, the N periods of constant consumption c do not matter

and the ranking is independent of c and N . On the other hand, FSD-monotonicity implies

that risk aversion is considered with respect to lifetime utility, including the utility derived

from the first N periods of life. For the ranking to be independent of c, preferences must

exhibit a constant absolute risk aversion with respect to lifetime utility, so that the utility

of the first N periods does not impact the evaluation of what may be consumed afterwards.

This explains the exponential functional form of risk-sensitive preferences, which incidentally

makes them extremely tractable in dynamic problems.

Moreover, the larger the N , the smaller the utility risk the agent is facing, because of

the discount factor β < 1 (the reverse would hold if β > 1). This generates a kind of non-

stationarity of preferences, unless an “amplification” mechanism of risk attitudes regarding

“utility risk” in the future is introduced. In consequence, an agent, who is risk averse with

respect to lifetime utility (k > 0) and who has positive time preferences (β < 1) must exhibit

greater risk aversion for lotteries resolving in the distant future in order to preserve preference

stationarity. This greater risk aversion should precisely compensate the discount of future risks

due to the time preference parameter β. Similarly an agent, who is risk prone with respect

to lifetime utility (k < 0) and has positive time preferences (β < 1) has to exhibit more

risk loving (and thus smaller risk aversion) for lotteries resolving in the future. Symmetric

arguments would hold in the case of negative time preferences (β > 1). In the case of zero

time preferences (β = 1), agents would be indifferent to the timing of uncertainty resolution.23

Preferences for the timing (or, equivalently, a degree or risk aversion that depends on time

distance) is a necessary ingredient to compensate for the existence of time preferences, as soon

as temporal risk aversion is introduced and preferences are stationary. This compensation

mechanism is explicit in recursion (17), in which certainty equivalents at date τ are computed

with φτ (x) = −βτ+1

k e
− kx
βτ+1 exhibiting a coefficient of absolute risk aversion equal to k

βτ+1 . As

time goes by, this coefficient increases at a rate 1
β , which exactly offsets the decrease of utility

due to time preferences.

recursion V (c,m) = u(ct) − β
k
log(Em

[
e−kV

]
), where u is such that u(c∗) = 0, avoiding any problem of

convergence.
23The case β = 1 (zero time preferences) precisely corresponds to the multiplicative model of Bommier

(2013), which fits into the expected utility framework and exhibits no preference for the timing.
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4.3.3 Weak separability and utility independence

Risk-sensitive preferences fulfill an assumption of (mutual) utility independence similar to the

one discussed by Keeney and Raiffa (1993), that may significantly help for the resolution of

a number of economic problems. Preferences regarding what may happen at dates t0 and

t1, conditional on having consumption at another date t being equal to a given level ct, are

independent of ct. The property also holds when ct is random and independently distributed.

In a dynamic setting, preference stationarity implies independence of past history. The utility

independence property in addition requires that preferences have to be independent of the

(exogenous) future.

Utility independence is not a direct consequence of stationarity and FSD-monotonicity.

Indeed, when the function b is non-constant, Uzawa preferences associated with the aggregator

(14) are both stationary and FSD-monotone but not utility independent. In fact, when

considering monotone KP-recursive preferences, utility independence appears as a requirement

for preferences to disentangle ordinal and risk preferences, as will be shown in Proposition 2.

This comes from the –so far unnoticed– fact that, in the expected utility framework, history

independence together with non-trivial risk aversion comparability imposes independence with

respect to the future, and therefore mutual utility independence in the sense of Keeney and

Raiffa (1993).

Mutual utility independence has, in turn, significant implications. Indeed, as has been

known since Koopmans (1960), the combination of stationarity and independence with respect

to the future (called “period independence” in Koopmans’ article) implies weak separability of

preferences and constant time discounting. This explains why discussing risk aversion even-

tually requires us to consider preferences over deterministic consumption paths that can be

represented by an additive utility function with a constant time discounting.24 The property

of weak separability, which is often introduced as a technical assumption or justified by the

long tradition of research that makes use of it –as in Epstein and Zin (1989), Chew and Ep-

stein (1990) or Klibanoff, Marinacci, and Mukerji (2009)– is in fact a necessary condition to

study risk aversion while assuming preference stationarity and FSD-monotonicity.

Utility independence is a very powerful property that simplifies the analysis from both

a theoretical and a numerical point of view in many intertemporal problems. Consider for

example independently distributed (but not necessarily identically distributed) periodic con-

sumptions (c̃t)t≥1, where uncertainty regarding date t consumption is revealed at date t.
24The restriction of risk-sensitive references to C∞ is represented by the utility function U∞(c0, c1, ...) =

(1− β)
∑∞
t=0 β

tu(ct).
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Setting Vt = e−kUt , we have:

Vt = e−k(1−β)u(ct)(Et [Vt+1])β = e−k(1−β)u(ct)
(
Et

[
e−k(1−β)u(c̃t+1)Et+1[Vt+2]β

])β
,

= e−k(1−β)u(ct)Et[e
−k(1−β)u(c̃t+1)]βEt[Vt+2]β

2
,

where the independence property has been used for getting the last equality. By induction,

we have V0 = e−k(1−β)u(c0)
∏∞
i=1

(
E0[e−k(1−β)u(c̃i)]

)βi and thus:

U0 = (1− β)

∞∑
i=0

βiu(ĉi), (24)

where ĉ0 = c0 and for any i ≥ 1, ĉi = ψ−1 (E0[ψ(c̃i)]) is the certainty equivalent of random

consumption c̃i computed with the utility index:

x 7→ ψ(x) = − 1

k(1− β)
e−k(1−β)u(x). (25)

Thus, when per-period consumptions are independently distributed, we fall back to the orig-

inal proposition of Selden (1978) who suggested replacing random per-period consumptions

with their certainty equivalents. However, the certainty equivalent is computed with a partic-

ular utility index (25), whose degree of risk aversion increases with k. The additive structure

of equation (24) guarantees that most results holding in a two-period framework will ex-

tend to an infinite horizon setting when per-period consumptions are independently (but not

necessarily identically) distributed. We provide an illustration in Proposition 5.

5 Studying risk aversion with monotone recursive preferences

Departure from the standard additively separable expected utility model was mainly justified

to obtain a framework flexible enough to study risk aversion. Kihlstrom and Mirman (1974)

have shown that it requires a setup in which risk aversion can be varied without impacting

ordinal preferences. In this section, we investigate whether preferences obtained in Proposition

1 achieve such a separation between risk and ordinal preferences, and to what extent they are

well-ordered in terms of risk aversion.

5.1 Disentangling ordinal and risk preferences

The following proposition states our result about the separation between ordinal and risk

preferences.
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Proposition 2 (Comparability of preferences) Consider two KP-recursive preference re-

lations �A and �B on D, which are FSD-monotone and whose restrictions to C∞ are iden-

tical. Then:

– either both preference relations are identical: �A =�B,

– or the preference relations �A and �B can be represented by utility functions UA and

UB fulfilling the following recursion (for i = A,B):

∀(c,m) ∈ D, U i(c,m) =

 (1− β)u(c)− β
ki

log
(
Em[e−kiU

i
]
)
, ki 6= 0,

(1− β)u(c) + βEm[U i], ki = 0,

where 0 < β < 1, kA, kB in R and u : C → R is a continuously differentiable function

with a strictly positive derivative.

Proof: See Appendix.

This proposition shows, that among KP-recursive preferences, risk-sensitive preferences are

the only ones that make it possible to disentangle risk and ordinal preferences. By contrast,

preferences à la Uzawa, though stationary and FSD-monotone, are inappropriate to study the

role of risk aversion. Indeed, with Uzawa preferences, risk aversion cannot be varied without

changing ordinal preferences.

5.2 Risk-sensitive preferences and risk aversion

We now explore whether risk-sensitive preferences exhibit risk aversion, and can be ordered

in terms of risk aversion. Following the literature initiated by Pratt (1964), Rothschild and

Stiglitz (1970) and Diamond and Stiglitz (1974), we explore in turns the notions of weak and

strong risk aversion. Weak risk aversion refers to the willingness to fully eliminate all risks,

while strong risk aversion refers to the willingness to marginally decrease risk.

5.2.1 Weak risk aversion

A first way to look at risk aversion involves looking at how agents compare risky lotteries with

deterministic prospects.

Proposition 3 (Weak risk aversion) Consider two KP-recursive preference relations rep-

resented by utility functions UA and UB fulfilling the recursion (for i = A,B):

∀(c,m) ∈ D : U i(c,m) =

 (1− β)u(c)− β
ki

log
(
Em[e−kiU

i
]
)
, ki 6= 0,

(1− β)u(c) + βEm[U i], ki = 0,
(26)

26



with kA, kB in R, 0 < β < 1, and u : C → [0, 1] a strictly increasing continuously differentiable

concave function. Then:

1. (weak risk aversion) If kA ≥ 0, then for all (c,m) ∈ D, we have UA(E[(c,m)]) ≥
UA(c,m).25

2. (weak comparative risk aversion) If kA ≥ kB, then for all (c,m) ∈ D and (c′,m′) ∈ C∞,
we have:

UA(c,m) ≥ UA (c′,m′)⇒ UB(c,m) ≥ UB(c′,m′).

This proposition first states that risk preferences with a non-negative constant k and a

concave function u exhibit weak risk aversion, in the sense that the expectation of a temporal

lottery is always viewed as at least as good at the temporal lottery itself. Therefore, we will

say that an agent endowed with a positive k and a concave u is weakly risk averse. The second

point indicates that if two agents with risk-sensitive preferences differ only with respect to

the constant k that enters in the recursion (26), the one with a greater k will always associate

a lower certainty equivalent (lower in terms of lifetime utility) than the one with a smaller

k. In others words, the willingness to pay for eliminating all risks increases with k. The

parameter k therefore allows us to compare agents in terms of weak risk aversion. Since Pratt

(1964) and the notion of risk premium, this comparison of certainty equivalents is often used

to compare agents’ risk aversion. For example, Epstein and Zin (1989, pp. 949-950) rely on

such an approach to conclude that decreasing the parameter α in (12) involves increasing risk

aversion.

5.2.2 Second-order stochastic dominance and strong risk aversion

Weak risk aversion and weak comparative risk aversion, as presented above, relate to compar-

isons of lotteries with deterministic outcomes. These notions are however not fully informative

about the willingness of agents to marginally reduce risk. For example, in atemporal settings,

it is well known that weakly risk averse agents may fail to prefer risk reductions in the sense

of ‘‘second-order stochastic dominance” (SSD, hereafter).26 This calls therefore for notions of

strong risk aversion and strong comparative risk aversion, that reflect agent’s preferences for

marginal risk reduction.

Second-order stochastic dominance. We use insights from the closure approach intro-

duced in Section 3.2 to explain how SSD can be defined when considering temporal lotteries.
25As already explained, a temporal lottery (c0,m) ∈ D can also be represented as the sequence of

uncertain future consumptions (c0, c̃1, c̃2, . . . , c̃t, . . .). The expectation of the temporal lottery is then
(c0, E[c̃1], E[c̃2], . . . , E[c̃t], . . .), which is an element of C∞.

26See Cohen (1995) for an excellent survey on this topic and related issues.
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We first state a result, similar to that of Lemma 2, related to the notion of SSD in atemporal

settings.

Lemma 5 (SSD in atemporal settings) Consider a compact metric ordered space (X,≥).

Denote by M(X) the set of probability measures over X, on which the binary relation of SSD

(denoted SSDX) is –as usual– defined as follows. For (m,m′) ∈M(X)2:

mSSDXm′ ⇔ ∀z ∈ X,
ˆ
y≤z

m({x ∈ X|x ≥ y})dy ≤
ˆ
y≤z

m′({x ∈ X|x ≥ y})dy. (27)

Let RXa be the binary relation on X defined by mRXa m′ if and only if m is a (degenerate)

lottery paying off the average outcome of m′ with probability one.

Then, the relation SSDX is the smallest RTCMS extension of (≥ ∪RXa ).

Proof. The proof is similar to that of Lemma 2, except that extending (≥ ∪RXa ) rather

than ≥, constrains the set UR to only include increasing and concave functions. We can then

use the result from Fishburn (1974) showing that SSD is obtained for UR being the class of

continuous, increasing and concave utility functions.

In the case of temporal lotteries, characterization (27) is not relevant because of the lack

of natural order on D. A similar difficulty was encountered for defining FSD in Section 3.2.

However, here again, we can use the closure approach to bypass it:

Definition 6 (SSD for temporal lotteries) Consider Ra the binary relation on D defined

by (c,m)Ra(c
′,m′)⇔ (c,m) = E[(c′,m′)] and �0 a preference relation on C∞.

We define SSD, the relation of second-order stochastic dominance on D, as the smallest

RTCMS extension of (�0 ∪Ra).

This definition of SSD exactly replicates the closure approach suggested by Lemma 5.

Moreover, since �0⊂ (�0 ∪Ra), we deduce by taking the RTCMS extension that FSD ⊂ SSD
just like in atemporal settings.

Strong risk aversion. Monotonicity with respect to SSD is, as usual, called “strong risk

aversion”: a strongly risk averse agent should prefer (c,m) to (c′,m′) if (c,m)SSD(c′,m′).

It is insightful to write the difference between weak and strong notions of risk aversion in

terms of inclusions of binary relations. In the first point of Proposition 3, weak risk aversion

was formalized as Ra ⊂�, or equivalently (Ra∪ �0) ⊂� since by construction �0⊂�. Strong
risk aversion stipulates that not only (Ra∪ �0), but also its smallest RTCMS extension,

should be included in �. Thus, loosely speaking, strong risk aversion involves formulating a

“mixture-stable” statement of weak risk aversion.
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Similarly, we can reformulate the second point of Proposition 3 on weak comparative risk

aversion in terms of inclusions of binary relations, so as to derive a natural strong extension.

Precisely, we define the binary relation Rd on D by

(c,m)Rd(c
′,m′)⇔ (c′,m′) ∈ C∞, (28)

which can be interpreted as (c,m) is at least as risky as (c′,m′), since the latter is risk-free.

The second point of Proposition 3 writes then as: if kA ≥ kB, then (Rd∩ �A) ⊂ (Rd∩ �B).

This approach to weak comparative risk aversion parallels the one of Yaari (1969) based on

inclusions of acceptance sets. The idea is that if a given agent prefers a risky lottery to a

deterministic one, so should it be for any less risk averse agent. However, since Rd is not

mixture-stable, the binary relations (Rd∩ �A) and (Rd∩ �B) are not mixture-stable either.

In order to define strong comparative risk aversion, we introduce a mixture-stable notion of

acceptable increases in risk. Formally:

Definition 7 (Acceptable increase in risk) Consider a preference relation � on D. We

define the relation of acceptable increase in risk R�d as the smallest RTCMS extension of

(Rd∩ �).

We will say that agent A is more strongly risk averse than agent B if R�
A

d ⊂ R�
B

d .

This way of defining strong comparative risk aversion parallels the definition proposed by

Diamond and Stiglitz (1974) in atemporal settings.27 We can now summarize the behavior of

risk-sensitive preferences with respect to strong risk aversion:

Proposition 4 (Strong risk aversion) Consider two KP-recursive preference relations �A

and �B represented by utility functions UA and UB as in Proposition 3. Assume that �A and

�B have the same restriction to C∞, denoted �0. Then:

1. (strong risk aversion) If kA ≥ 0, then (c,m)SSD(c′,m′)⇒ (c,m) �A (c′,m′).

2. (strong comparative risk aversion) If kA ≥ kB, then R�
A

d ⊂ R�
B

d .

Proof. If kA ≥ 0 then Ra ⊂�A (from Proposition 3) and �0⊂�A (by construction of �0).

Since �A is RTCMS, it implies that SSD ⊂�A, which proves the first point.

If kA ≥ kB, we have (Rd∩ �A) ⊂ (Rd∩ �B) (from Proposition 3). Considering the

RTCMS extension of this inclusion readily implies that R�
A

d ⊂ R�
B

d , which proves the second

point.
27In Diamond and Stiglitz (1974), expected utility is assumed and acceptable increases in risk are introduced

as “mean utility preserving increases in risk”. Then, A is said to be more risk averse than B if a mean utility
preserving increase in risk for A is utility increasing for B.
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Proposition 4 makes it clear that with risk-sensitive preferences “weak” notions systemat-

ically extend to “strong” notions, just like in the (atemporal) expected utility framework.28

This is generally false in non mixture-stable frameworks. For example, Epstein-Zin pref-

erences exhibit weak aversion, but not strong risk aversion (unless they are risk-sensitive

preferences).29

In many concrete and practical problems, full risk elimination is either impossible, or

simply not optimal, while marginal risk reduction is more likely to be available. To address

such problems, it is then important to use a framework that is well-behaved in terms of strong

risk aversion, like risk-sensitive preferences. The applications provided below will show some

results that can be obtained when using risk-sensitive preferences.

6 Applications

We study the role of risk aversion in three applications: demand for insurance, precautionary

savings in infinite horizon and asset pricing. We will see that in these three cases, using

risk-sensitive preferences makes it possible to derive intuitive results. All these results could

be shown to fail with non FSD-monotone preferences.

6.1 The demand for insurance

Our first result bears on the demand for insurance, in a setting where agents face independent

future income risks that can be insured at date 0.

Proposition 5 (Risk aversion and the demand for insurance) Consider a class of

agents with risk-sensitive preferences, with a concave function u and differing only by the

risk aversion parameter k ≥ 0. Agents are endowed with an independently distributed income

process (ỹt)t≥0 ∈ Y∞ where Y is a compact interval. Agents can purchase at date 0 quantities

(qt)t≥1 of insurance assets (α̃t)t≥1. For each t ≥ 1, the insurance asset α̃t has a price pt > 0

at date 0 and pays off α̃t = E[ỹt] − ỹt at date t. We denote (qkt )t≥1 the optimal insurance

demand of agent k, which is the solution of:

(qkt )t≥1 = arg max
(qt)t≥1

Uk(y0 −
∞∑
i=1

piqi, ỹ1 + q1α̃1, . . . , ỹt + qtα̃t, . . .),

where Ukdenotes the utility of the agent with risk aversion k.
28In the atemporal expected utility framework, Rothschild and Stiglitz (1971) demonstrated the equiva-

lence between weak and strong risk aversion, and Diamond and Stiglitz (1974) the equivalence between weak
comparative risk aversion and strong comparative risk aversion.

29Actually, we know from Proposition 1 (or from Lemma 4) that Epstein-Zin preferences are not monotonic
with respect to FSD. Thus, they cannot be monotonic with respect to SSD.
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Then, for all t ≥ 1, we have ∂qkt
∂k ≥ 0.

Proof. The formal proof is in the Appendix. It relies on equation (25), which implies that

the marginal rate of substitution between consumption in period 0 and consumption in period

t is independent of consumption in other periods. Due to this strong separability assumption,

the problem is akin to a standard problem of insurance demand in a two-period setting.

Moreover, since preferences are well-ordered in terms of strong risk aversion, this two-period

problem leads to intuitive predictions, stating that the demand for insurance increases with

risk aversion.

Proposition 5 shows that with risk-sensitive preferences, the greater the risk aversion the

stronger the insurance demand, similar to what was found in the expected utility framework

by Briys and Schlesinger (1985) and Dionne and Eeckhoudt (1985).

6.2 Precautionary savings in infinite horizon

Since the early works of Leland (1968) and Sandmo (1970), the problem of savings when

facing uncertain future income has received a lot of attention. In particular, Carroll (1997)

and Carroll and Samwick (1998) emphasize that, quantitatively speaking, precaution could

be one of the main motives for savings. On the theoretical side, the question of precautionary

savings has been mostly investigated in two-period frameworks, as in Drèze and Modigliani

(1972), Kimball (1990), Kimball and Weil (2009), or Bommier, Chassagnon and LeGrand

(2012), among many others. The extension to many periods or to an infinite horizon has only

been addressed in very few cases. Most analytical studies are based on standard additively

separable life-cycle models where the role of risk aversion cannot be explored. The only two

exceptions we are aware of are Van der Ploeg (1993) and Weil (1993), who consider very

specific parametrized forms of uncertainty so as to derive closed-form solutions.30 Apart from

these studies, a couple of papers numerically address the problem, as for example in the recent

work of Wang, Wang and Yang (2013).

In the particular cases considered by Van der Ploeg (1993) and Weil (1993), risk aversion

was found to have a positive impact on precautionary savings. However, it is impossible to

tell from these studies, whether this positive correlation reflects a fundamental link between

risk aversion and prudence, or whether this is a consequence of the specific risks that are

considered. The two-period analysis of Kimball and Weil (2009) shows that the relation

between risk aversion and prudence is ambiguous in the Epstein-Zin framework. As was
30Both studies assume autoregressive income processes. Weil uses particular recursive Kreps-Porteus prefer-

ences, which are not FSD-monotone. Van der Ploeg investigates the case of a (non-stationary) multiplicative
expected utility model, with instantaneous quadratic utility functions.

31



explained in Section 3.3, this is directly related to the fact that Epstein-Zin preferences are

not FSD-monotone.

In this section, we show that a general result holds when studying risk aversion with KP-

recursive FSD-monotone preferences. Rather than introducing specific parametrized forms of

uncertainty, we assume that agents are endowed with a stochastically monotone income process

(ỹt)t≥0, meaning that for all t ≥ 0 and x ∈ R the function (y0, y1, . . . , yt) → Prob(ỹt+1 ≥
x|y0, y1, . . . , yt) is non-decreasing (i.e., non-decreasing in each of the yτ , for τ ≤ t). The

assumption of stochastic monotonicity is a general way to formulate that good news at dates

0 to t cannot convey bad information for the subsequent periods. Most income processes used

in the literature comply with such an assumption.

As in Proposition 5, we consider agents with risk-sensitive preferences who only differ by

the risk aversion parameter k. The function u is assumed to be concave and k always positive,

as we restrict our attention to risk averse agents. Technically speaking, the assumption of

a stochastically monotone income process does not rule out extremely rapid income growth

or income decline, which could result in existence and convergence problems. Rather than

introducing a set of technical assumptions, we simply assume that the income process and

preference parameters (in particular β and u) are such that convergence problems do not

occur.

We consider the saving decision at time t of agents with wealth wt and realized income

trajectory that we denote yt = (y0, . . . , yt).31 Let V k
t (wt, y

t) be the indirect utility at time t

of the agent with risk aversion k. We have:

V k
t (wt, y

t) = max
st

u(ct)−
β

k
logEte

−kV kt+1(wt+1,yt+1) (29)

s.t. wt+1 = Rst and yt + wt − st = ct ≥ 0

The optimum is reached at skt (wt, yt), which is the amount that the agent with risk aversion

k chooses to save. We can now state the following result:

Proposition 6 (Precautionary savings) For all t ≥ 0, we have ∂skt (wt,yt)
∂k ≥ 0.

Proof. The formal proof is in the Appendix. Even in the presence of binding consumption

positivity constraints, consumption, income and continuation utility can be shown to be

comonotone at all dates: states of the world can be ranked from good to bad, with good

states corresponding to high consumption levels. The impact on continuation utility of a

marginal increase in st is thus larger if information at date t + 1 reveals a bad state than if
31We indicate the whole income history, as the income process is not necessarily Markov. Expectations

regarding future income may then depend on the whole income history.
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it reveals a good state. Increasing savings therefore transfers welfare from good states to bad

ones, achieving a risk reduction. A given agent saves then more than a less risk averse one.

Proposition 6 makes a clear statement about the relationship between risk aversion and

prudence in dynamic frameworks. Greater risk aversion implies greater prudence. The key

feature of our result is that it holds for any stochastically monotone income process. The result

is thus much more general than those of Van der Ploeg (1993) and Weil (1993), who specify

income process to be able to derive closed form solutions. To our knowledge, Proposition 6

provides the first general result on the determinants of precautionary savings in an infinite

horizon model that was derived without assuming either a specific random income process or

additive separability of preferences.

6.3 Asset pricing

The third application investigates the impact of risk aversion on the risk free rate and market

price of risk. This is to some extent a dual problem to the one in Section 6.2. Instead of

studying consumption-saving decisions with exogenous prices, we now analyze endogenous

asset prices, while consumption is exogenous.

We consider an economy, with a single agent endowed with an exogenous random consump-

tion. Here again, we do not assume a specific form of uncertainty but take a non-parametric

approach. In line with Section 6.2, we assume that the consumption process (c̃t)t≥0 is stochas-

tically monotone. This embeds most standard consumption processes used in the asset pricing

literature, like for example the trend stationary specification and the random walk dynamics

considered in Tallarini (2000).

At date t, the agent with risk aversion k has a utility function Ukt fulfilling:

Ukt = (1− β)u(ct)−
β

k
log
(
Et[e

−kUkt+1 ]
)
. (30)

As noted in the previous section, stochastic monotonicity does not rule out extremely rapid

consumption growth or consumption decline, which could result in existence and convergence

problems. Rather than introducing a set of technical assumptions on the preference param-

eters or on the consumption process, we simply assume that the recursion (30) always has

a unique solution fulfilling all required properties of differentiability and integrability for the

computations shown in the proof of Proposition 7.

The intertemporal marginal rate of substitution Mt,t+1 between dates t and t + 1, also
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known as the pricing kernel, can be expressed as follows:

Mt,t+1 =
β

1− β
u′(c̃t+1)

u′(ct)

e−kU
k
t+1

Et

[
e−kU

k
t+1

] .
The one period risk-free rate Rt (between dates t and t+ 1) can be deduced from Mt,t+1:

1

Rt
= Et [Mt,t+1] , (31)

as well as the market price of risk σt:

σt =
Vt [Mt,t+1]1/2

Et [Mt,t+1]
, (32)

where Vt [Mt,t+1] denotes the variance of the marginal rate of substitution Mt,t+1 conditional

on the information available at date t.

The next proposition summarizes our findings regarding the impact of a change in the risk

aversion parameter k on the risk free rate and the market price of risk.

Proposition 7 (Asset prices and risk aversion) In the set-up described above, an in-

crease in the risk aversion parameter k of the agent implies:

– a smaller risk free rate;

– a greater market price of risk.

Proof. The proof is given in Appendix.

Risk aversion in the risk-sensitive framework has an intuitive effect on the risk free rate

and the market price of risk. A more risk averse agent is willing to pay more to transfer

resources from a certain state of the world (today) to an uncertain one (tomorrow), which

raises the price of riskless savings and thus reduces the riskless interest rate. By the same

token, a more risk averse agent requires a larger discount to hold a risky asset, which increases

the market price of risk.

The results of Proposition 7 also have interesting consequences when discussing policy

issues. For example, the on-going debate as to the cost of climate change is strongly influenced

by the choice of the appropriate discount rate, and on how the risk and the planner’s risk

aversion affect this rate. Our result clearly states that the more risk averse the planner, the

lower the discount rate that should be used for policy evaluation.
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7 Concluding remarks

The primary objective of this paper was twofold: (i) to show which recursive specifications

would rule out the choice of dominated strategies; (ii) to emphasize the possible gains for

economists to opt for such specifications. The answer to the first point is clear-cut. Within

the Kreps-Porteus framework, Uzawa preferences and risk-sensitive preferences introduced by

Hansen and Sargent are the only ones to rule out preferences for dominated strategies. The

results extend to smooth recursive ambiguity models (see Appendix A) where –in addition

to the Uzawa model– the only well-behaved specifications are provided by the “robust model

with hidden states” of Hansen (2007) and Hansen and Sargent (2007a). As for the second

point, we have shown that imposing FSD-monotonicity leads to a much better understanding

of the role of risk aversion. In particular, we have established the existence of a fundamental

link between risk aversion and prudence, with clear consequences on precautionary savings,

asset pricing, or on the choice of an appropriate discount rate in cost-benefit evaluation.

Fulfilling our primary objective has led us to derive side results which are interesting in

themselves. We conclude our paper by mentioning two of them. First, we have shown that

FSD and SSD can be characterized as the smallest binary relations fulfilling some intuitive

properties, including mixture-stability. This proves to be a very efficient approach for defining

FSD and SSD on complex sets, such as the one of temporal lotteries, and to establish that

some preferences are monotone with respect to FSD and SSD. Such an approach could be

used in other settings or to define higher order stochastic orders.

Second, we have obtained that weak separability, on the one hand, and allowing for pref-

erences for the timing, on the other hand, are necessary requirements to study the role of

risk aversion in recursive settings. Weak separability is needed to combine past independence

with the separation of ordinal and risk preferences. Preferences for the timing have to be

introduced to compensate for time preferences. These findings complete the initial results

of Koopmans (1960, 1965) by showing some key features that appear when applying the as-

sumption of preference stationarity in an infinite horizon setting. In line with the comments

of Fisher (in Koopmans, 1965),32 these results can be seen as providing arguments to aban-

don the infinite horizon assumption, to include terminal constraints as in Ramsey (1928) or

Bommier (2013), or to weaken the notion of preference recursivity as was discussed in Section

4.3.1. The alternative is to accept risk aversion, time preferences and preferences for the

timing to be intertwined.

32According to Fisher, “The obvious conclusion from Koopmans’ paper, therefore, seems to me to be that
one ought to abandon the use of infinite horizons – not that one ought to abandon certain ethical notions.”
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Appendix

A On monotone recursive models of ambiguity

In this section, we extend our main representation result (Proposition 1) to choice under am-

biguity. To do so, we investigate the class of smooth recursive ambiguity models axiomatized

by Hayashi and Miao (2011) and studied further by Ju and Miao (2012). We consider com-

pound lottery acts, that can be viewed as a function from the set of states of the world into

the set of lotteries whose outcomes are the combination of a per-period consumption and a

compound lottery act. Denoting by G the set of compound lottery acts and by Ω the set of

the states of the world we have:

G = (M(C × G))Ω ,

where M(C ×G) denotes the set of probability measures on C ×G. Hayashi and Miao (2011)

provide an axiomatic construction of preferences, where the agent evaluates elements of C × G
as follows: (i) the agent relies on a subjective probability measure over the set of states of

the world, which generates a correspondence between compound lottery acts and compound

lotteries; (ii) using this probability measure, the agent evaluates the compound lottery through

a sequence of expected utility evaluations. Formally, the representation result of Hayashi and

Miao stipulates that there exist increasing functions ψ1 and ψ2 and an aggregator Ŵ increasing

in its second argument such that the utility of an element (c, g) ∈ C × G can be expressed as

follows:

V (c, g) = Ŵ

(
c, ψ−1

1

(ˆ
M(Ω)

ψ1

(
ψ−1

2

(∑
ω∈Ω

[π](ω)

ˆ
C×G

ψ2(V )dg(ω)

))
dπ([π])

))
,

where π ∈ M(M(Ω)) is a probability measure over the set of objective distributions, and

[π] ∈ M(Ω) is one of the possible “realizations” of π. Following Ju and Miao (2012), we

rewrite the above expression in a more synthetic way:

V (c, g) = Ŵ
(
c, ψ−1

1

(
Eπ
[
ψ1

(
ψ−1

2 (E[π][ψ2(V )])
)]))

. (33)

In the recursion (33), the notation Eπ[·] refers to the expectation operator when consider-

ing the distribution of objective probability measures and the notation E[π][·] refers to the

expectation operator relating to the probability measure [π].

Since ψ2 is an increasing function, the utility function U = ψ2(V ) represents the same
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preferences as V . Moreover, U fulfills the following recursion:

U(c, g) = W (c, φ−1Eπ[φ(E[π][U ])]), (34)

where φ(·) = ψ1(ψ−1
2 (·)) is an increasing function and W (x, y) = ψ2(Ŵ (x, ψ−1

2 (y))) is an

aggregator, which is increasing in its second argument. Our discussion uses the representation

(34) rather than the equivalent one (33) as it makes it easier to visualize the connections with

our previous results.

In that setting, FSD can be defined as in Section 3.2, with minor technical differences to

account for compound lotteries. We do not provide a formal definition of FSD as the extension

of Definition 2 to compound lotteries is straightforward. Note that the notion of stochastic

dominance is subjective because the beliefs are. The corresponding FSD-monotonicity (which

could be defined as in Definition 4) becomes a consistency requirement between ordinal pref-

erences, subjective beliefs and preferences over compound lottery acts.

The following proposition explains which specifications of the recursion (34) represent

FSD-monotone preferences.

Proposition 8 (Monotone ambiguity-averse preferences) Consider a recursive model

of choice under ambiguity, where the preference relation � defined over C × G can be repre-

sented by the recursion (34), where φ and W are twice continuously differentiable with positive

derivatives. We assume that subjective beliefs can take any value in M(M(Ω)). Then, the

following statements are equivalent:

1. The preference relation � is FSD-monotone.

2. The preference relation � can be represented by a utility function fulfilling one of the

following recursions:

(a) (Subjective expected utility à la Uzawa)

U(c, g) = a(c) + b(c)EπE[π][U ], (35)

where a(·) and b(·) fulfill the same conditions as in Proposition 1.

(b) (Robust model with hidden states)

U(c, g) = (1− β)u(c)− β

k2
log

(
Eπ

[
e
−k2

(
− 1
k1

logE[π][e
−k1U ]

)])
, (36)

where 0 < β < 1, k1 and k2 in R (the cases k1 = 0 or k2 = 0 being obtained by

considering the limit in (36)) and u : C → R is a twice continuously differentiable
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function with a strictly positive derivative.

Proof.

Necessary part (1⇒ 2). We consider preferences whose utility representation U follows the

recursion (34). First, we consider cases without ambiguity, where the subjective probability

measure π is degenerate and equal for sure to some [π] ∈M(Ω). For preferences represented by

(34) to be FSD-monotone, KP-recursive preferences represented by UA(c, g) = W (c, E[π][U
A])

must also be FSD-monotone. Second, we consider the case where the support of π is included

in the set of degenerated lotteries over Ω. As in the first case, preferences represented by

UB(c, g) = W (c, φ−1Eπ[φ(UB)]) must also be FSD-monotone. The functions UA and UB

represent the same preferences over the set of deterministic consumption paths and both

represent FSD-monotone recursive preferences. Thus, from Proposition 2, the associated

preferences are either (i) identical and Uzawa preferences, or (ii) risk-sensitive preferences

with the same u and β.

Sufficient part (2 ⇒ 1). Since aggregators are very similar to those in Proposition 1, a

similar proof can be provided to show that preferences corresponding to these aggregators

are FSD-monotone. The Uzawa case is straightforward. For the other one, defining Vt =

(1− β)
∑t−1

i=0 β
iu(ci) + βtUt, we have:

V∞ = (1− β)

∞∑
i=0

βiu(ci),

Vt = φ−1
t

(
Eπt [φt

(
ψ−1
t

(
E[πt][ψt(Vt+1)]

))
]
)
,

where ψt(x) = −βt+1

k1
e
− k1
βt+1 x and φt(x) = −βt+1

k2
e
− k2
βt+1 x. FSD-monotonicity then becomes

straightforward, as a temporal lottery act is evaluated as a compound lottery on lifetime

utilities.

As a preliminary comment, we emphasize that Proposition 8 should be carefully inter-

preted, since the statement involves considering all possible beliefs inM(M(Ω)), while models

of choice under ambiguity may restrict the set of beliefs to some subsets of M(M(Ω)). As

a consequence, there may exist preferences fulfilling the representation (34) and constraining

the set of possible beliefs, which are not presented by any utility function of Proposition 8 but

still FSD-monotone. Proposition 8 provides a set of sufficient (but not necessary) restrictions

on the aggregator guaranteeing that no dominated strategy would be chosen. It provides

moreover the weakest restriction that can be derived without any additional information on

how subjective beliefs are formed.
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The representations of Proposition 8 connect with well-known models of the literature.

Specification (35) corresponds to the subjective (ambiguity neutral) version of Uzawa. If

k1 = k2 in equation (36), we obtain the subjective (ambiguity neutral) version of risk-sensitive

preferences. The case k1 = 0 corresponds to the model of Klibanoff, Marinacci and Mukerji

(2005), with a constant absolute ambiguity aversion. This specification, for which we provide

a formal argument, is the one actually chosen in most applications, as for instance in Collard,

Mukerji, Sheppard and Tallon (2011). The general case with different and non-zero k1 and

k2 has been introduced by Hansen (2007) and Hansen and Sargent (2007a) in their work on

robustness with hidden states. Our assumption of differentiability prevents us from consid-

ering the max-min recursive model initialized by Gilboa and Schmeidler (1989) and studied

in Epstein and Wang (1994) and Epstein and Schneider (2003). However, this model can be

obtained for k1 →∞ in (36) and is clearly FSD-monotone.

B Technical Appendix

When explicitly specified, KP-recursive preferences will be represented by normalized utility
functions. These are functions which, in addition to the requirements of Definition 5, fulfill
U(c, c, c, . . .) = 0 and U(c, c, c, . . .) = 1. There is no loss of generality in this normalization,
as an affine transformation makes it possible to recover the general case.

Moreover we introduce a new notation. For any measure m, any strictly positive and
bounded random variable w such that Em[w] = 1, we define the weighted expectation of a
random variable X with respect to weight w as follows (provided that the expectation exists):

Ẽwm[X] = Em[Xw]. (37)

We also define (when they exist) the variance and the covariance with respect to w:

Ṽ w
m [X] = Em[(X)2w]− Em[Xw]2, (38)

c̃ovwm(X,Y ) = Em[XY w]− Em[Xw]Em[Y w]. (39)

B.1 Proof of Lemma 1

We first state a general result, similar to that of Dubra, Maccheroni and Ok (2004), but which
applies to non-reflexive and non-transitive binary relations.

Lemma 6 (Representation of a continuous mixture-stable binary relation) We con-
sider a compact metric space X and a continuous mixture-stable binary relation R on the set
M(X) of Borel probability measures over X. Then, there exists a set U of pairs of continuous
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functions over X, such that for any (m,m′) ∈M(X)2,

mRm′ ⇔ Em[u] ≥ Em′ [v] for all (u, v) ∈ U . (40)

Proof. We define:

U = {(u, v) ∈ C(X)2 :

ˆ
X
udm ≥

ˆ
X
vdm′ for all (m,m′) ∈M(X)2 such that mRm′},

where C(X) is the set of continuous functions on X. The set M(X) is endowed with the weak
(Prohorov) topology.

We wish to show that for any mRm′ ⇔ Emu ≥ Em′v for all (u, v) ∈ U . One direction
(⇒) is straightforward. Let us now consider (m1,m2) ∈M(X)2, such that (m1,m2) /∈ R (i.e.,
m1Rm2 does not hold) but such that

´
X udm1 ≥

´
X vdm2 for all (u, v) ∈ U . It implies that

{(m1,m2)}∩R = ∅. Note that U is a convex subset of C(X)2 and R is a closed convex subset
of M(X)2, because R is continuous and mixture-stable. The Strong Separating Hyperplane
Theorem (see proof of Theorem 3 in Vind, 2000) implies that there exists a continuous affine
map T : M(X)2 → R such that for all (m,m′) ∈ R:

T (m1,m2) < 0 ≤ T (m,m′). (41)

To characterize T , we consider the product space of all finite signed measures on X that
we denote ca(X)2. The set ca(X) is endowed with the weak∗-topology (which induces the
standard weak topology onM(X)) and is the dual of C(X). Dubra, Maccheroni and Ok (2004)
provides a detailed exposure of these topologies. The application T (·, ·)− T (0, 0) is linear on
ca(X)2. We deduce that there exists (û, v̂) ∈ C(X)2, such that for any (m,m′) ∈ ca(X)2,
T (m,m′) = α

´
X ûdm + β

´
X v̂dm

′ + γ. Restricting our attention to M(X)2 and defining
ũ = αû+ γ and ṽ = −βv̂, we have for all (m,m′) ∈M(X)2, T (m,m′) =

´
X ũdm−

´
X ṽdm

′.
Inequality (41) implies then that (ũ, ṽ) ∈ U and

´
X ũdm1 <

´
X ṽdm2, which contradicts the

definition of (m1,m2). We deduce that for any (m,m′) ∈M(X)2 the equivalence (40) holds.

We now prove Lemma 1. Denote by Ω the set of RTCMS extensions of �0. This set is
non-empty as FSD ⊂ Ω and has thus a minimal element R0 = ∩R∈ΩR. We need to show
that FSD ⊂ R0. Since R0 is a closed subset of D2 and FSD is the closure of ∪tFSDt =

∪t,τ≤tFSDτ,t, it is sufficient to prove by backward induction on τ that for all τ ≤ t we have
FSDτ,t ⊂ R0. For τ = t, we have FSDt,t =�0⊂ R0.

We now assume that for 0 < τ ≤ t, we have FSDτ,t ⊂ R0. Consider c, c′ ∈ Cτ as given
and define the binary relation R on M(Dt−τ ) by mRm′ ⇔ (c,m)R0(c′,m′). Lemma 6 shows
that there exists a set U of pairs of continuous functions over Dt−τ , such that equivalence
(40) holds for any (m,m′) ∈M(Dt−τ )2.
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For all pairs of degenerate elements of M(Dt−τ )2 (that is for all (m1,m2) ∈ (Dt−τ )2), the
induction hypothesis together with equivalence (40) imply that the class U may only contain
pairs of functions (u, v), such that (c,m1)FSDτ,t(c

′,m2)⇒ u(m1) ≥ v(m2).
Let us now consider (c,m) and (c′,m′) in Dτ−1,t = Cτ ×M(Dt−τ ) that are such that

(c,m)FSDτ−1,t(c
′,m′). Definition 1 implies that for all continuous functions φ : Cτ×Dt−τ →

R such that (c,m1)FSDτ,t(c
′,m2)⇒ φ(c,m1) ≥ φ(c′,m2), we have Em[φ(c, ·)] ≥ Em′ [φ(c′, ·)].

By setting u(·) = φ(c, ·) and v(·) = φ(c′, ·), we can obtain any pair (u, v) ∈ U verifying both
(i) (c,m1)FSDτ ,t(c′,m2)⇒ u(m1) ≥ v(m2) for (m1,m2) ∈ (Dt−τ )2 and (ii) Em[u] ≥ Em′ [v]

for (m,m′) ∈M(Dt−τ )2. Equivalence (40) implies then that mRm′ or (c,m)R0(c′,m′). Thus
FSDτ -1,t ⊂ R0.

B.2 Proof of Proposition 1

B.2.1 Necessary conditions

We first prove that FSD-monotone KP-recursive preferences admit a linear or a risk-sensitive
aggregator (i.e., that (14) or (15) hold).

A preliminary lemma. The lemma provides a first set of restrictions on aggregators.

Lemma 7 Consider KP-recursive preferences represented by a normalized utility function U
fulfilling (9) with an aggregator W . If preferences are FSD-monotone, then the aggregator can
be expressed as follows:

∀(x, y) ∈ C × [0, 1], W (x, y) = φ (a(x) + yb(x)) ,

where a, b : C → [0, 1], and φ : [0, 1] → [0, 1] are continuously differentiable, with a(c)=
φ(0) = 0, a(c̄) + b(c̄) = φ(1) = 1, a′ > 0, (a′ + b′) > 0 and φ′ > 0.

Proof.
We define preferences over C × M ([0, 1]) by considering the utility function Ũ given by:
∀(c,m) ∈ C ×M ([0, 1]) , Ũ(c,m) = W (c, Em[x]), where Em[x] ∈ [0, 1] denotes the expected
payment associated with probability measure m. Due to the normalization conditions, when c
varies in C, U(c, c, . . .) covers [0, 1] and the utility function U –applied to constant consump-
tion paths– generates an isomorphism from C into [0, 1]. As a consequence, if preferences over
D fulfill FSD-monotonicity, preferences over C×M ([0, 1]) represented by the utility function
Ũ also fulfill FSD-monotonicity.

First step. We consider x0 ∈ (c, c) and y0 ∈ (0, 1) (i.e., (x0, y0) lies in the interior of
the definition domain of W ). Since W is a continuously differentiable function with Wy > 0,
the implicit function theorem states that there exist B̃x0 and B̃y0 , respective neighborhoods
of x0 and y0, and a continuously differentiable function ηx0,y0 from B̃x0 into B̃y0 such that:
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∀x ∈ B̃x0 , W (x0, y0) = W (x, ηx0,y0(x)). Let y1 ∈ B̃y0 . By the same token, there exists a
continuously differentiable function ηx0,y1 from B̂x0 into B̂y1 such that, ∀x ∈ B̂x0 , W (x0, y1) =

W (x, ηx0,y1(x)). We define Bx0 = B̃x0 ∩ B̂x0 and By0,y1 = B̃y0 ∩ B̂y1 , which are non-empty
and open sets. For all x ∈ Bx0 , we have:

W (x0, y0) = W (x, ηx0,y0(x)) and W (x0, y1) = W (x, ηx0,y1(x)). (42)

With the assumption of FSD-monotonicity, (42) implies that for all p ∈ [0, 1]:

∀x ∈ Bx0 , W (x, pηx0,y0(x) + (1− p)ηx0,y1(x)) = W (x0, py0 + (1− p)y1). (43)

Derivation with respect to x of equations (42)–(43) yields:

Wx(x, ηx0,y0(x)) +Wy(x, ηx0,y0(x))
∂ηx0,y0
∂x

(x) = 0,

Wx(x, ηx0,y1(x)) +Wy(x, ηx0,y1(x))
∂ηx0,y1
∂x

(x) = 0,

Wx(x, pηx0,y0(x) + (1− p)ηx0,y1(x))

+Wy(x, pηx0,y0(x) + (1− p)ηx0,y1(x))

(
p
∂ηx0,y0
∂x0

(x) + (1− p)∂ηx0,y1
∂x0

(x)

)
= 0.

By substituting the first two equalities in the last one we deduce that:

∀x ∈ Bx0 ,
Wx(x, pηx0,y0(x) + (1− p)ηx0,y1(x))

Wy(x, pηx0,y0(x) + (1− p)ηx0,y1(x))
= p

Wx(x, ηx0,y0(x))

Wy(x, ηx0,y0(x))
+(1−p)Wx(x, ηx0,y1(x))

Wy(x, ηx0,y1(x))
,

which implies that the restriction of Wx(x,y)
Wy(x,y) on Bx0 ×By0,y1 is linear in y.

Thus, for any (x0, y0) ∈ (c, c)×(0, 1), there exists a neighborhood Bx0,y0 and two functions
âx0,y0 and b̂x0,y0 such that for all (x, y) ∈ Bx0,y0 we have:

Wx(x, y)

Wy(x, y)
= âx0,y0(x) + b̂x0,y0(x)y. (44)

Second step. Let y1 ∈ (0, 1). For all x ∈ (c, c), we define â(x) and b̂(x) by:

((x, y1) ∈ Bx0,y0 for some (x0, y0))⇒
(
â(x) = âx0,y0(x) and b̂(x) = b̂x0,y0(x)

)
.

The functions â and b̂ are well defined. Indeed, firstly, from (44), we know that for any x ∈
(c, c), there exists a pair (x0, y0) such that (x, y1) ∈ B(x0,y0). Secondly, if for some x1 ∈ (c, c)

there are two pairs (x0, y0) and (x′0, y
′
0), such that (x1, y1) ∈ B(x0,y0) and (x1, y1) ∈ B(x′0,y

′
0)

then for all (x, y) ∈ B(x0,y0) ∩B(x′0,y
′
0), we have:

Wx(x, y)

Wy(x, y)
= âx0,y0(x) + b̂x0,y0(x)y = âx′0,y′0(x) + b̂x′0,y′0(x)y,
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which implies âx0,y0(x1) = âx′0,y′0(x1) and b̂x0,y0(x1) = b̂x′0,y′0(x1).
The continuity of Wx

Wy
implies that â and b̂ are continuous functions. Let us consider the

set Γ = {(x, y) ∈ C × [0, 1]|Wx(x,y)
Wy(x,y) = â(x) + b̂(x)y}. This set is non-empty by construction

and closed by continuity of (x, y) 7→ Wx(x,y)
Wy(x,y) − â(x)− b̂(x)y.

Assume that there exists (x0, y0) ∈ (c, c) × (0, 1) which does not belong to Γ. The set
Λ = {λ ∈ [0, 1]|(x0, λy0 + (1 − λ)y1) ∈ Γ} is closed, and thus compact, contains 0 and does
not contain 1. Let λ1 be the supremum of Λ. By compactness, λ1 ∈ Λ and λ1 < 1. We know
from (44) that there exists ε > 0, such that for all λ with |λ− λ1| < ε, we have:

Wx(x0, λy0 + (1− λ)y1)

Wy(x0, λy0 + (1− λ)y1)
= âx0,λ1y0+(1−λ1)y1(x0) + b̂x0,λ1y0+(1−λ1)y1(x0) (λy0 + (1− λ)y1)) .

(45)
Moreover since λ1 ∈ Ω, we have for all λ ≤ λ1:

Wx(x0, λy0 + (1− λ)y1)

Wy(x0, λy0 + (1− λ)y1)
= â(x0) + b̂(x0) (λy0 + (1− λ)y1)) . (46)

We deduce that âx0,λ1y0+(1−λ1)y1(x0) = â(x0) and b̂x0,λ1y0+(1−λ1)y1(x0) = b̂(x0). Using (45),
equation (46) extends to some λ > λ1, contradicting λ1 being the supremum of Λ. We
conclude that Γ = C × [0, 1].

Third step. Given x0, we define w0 : y 7→ w0(y) = W (x0, y), which is increasing
continuously differentiable on [0, 1]. From equation (44), we know that W solves:

∀ (x, y) ∈ C × [0, 1], Wx(x, y) = (â(x) + b̂(x)y)Wy(x, y),

∀y ∈ [0, 1], W (x0, y) = w0(y).

The method of characteristics shows the existence and uniqueness of the solution given by:

W (x, y) = w0

(
ã(x) + b̃(x)y

)
, (47)

with: ã(x) =

ˆ x

x0

(
exp

(ˆ s

x0

b̂(τ)dτ

))
â(s)ds and b̃(x) = exp

(ˆ x

x0

b̂(s)ds

)
.

The functions ã and b̃ are continuously differentiable on C. The normalization of U implies
that W (c, 1) = 1 and W (c, 0) = 0. The representation of Lemma 7 is therefore obtained
for a(x) = ã(x)−ã(c)

ã(c̄)−ã(c)+b̃(c̄)
, b(x) = b̃(x)

ã(c̄)−ã(c)+b̃(c̄)
and φ(z) = w0 ((ã(c̄)− ã(c) + ã(c̄)) z + ã(c)).

Moreover, since w0 and W are differentiable and strictly increasing, we have that a, a+ b and
φ are also differentiable, increasing and with values in [0, 1] (in (0, 1) for b).�

Proof of the representation result in Proposition 1. From Lemma 7, we know that
KP-recursive preferences admit an aggregatorW (x, y) = φ(a(x)+b(x)y) with a(c)= φ(0) = 0
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and a(c) + b(c) = φ(1) = 1. Let x1 ∈ C and let the function W̃ be defined by:

W̃ (x, y) = W (x,W (x1, y)) for all (x, y) ∈ C × [0, 1].

With the same proof strategy as in Lemma 7, one may show that for all (x, y) ∈ C × [0, 1],
W̃ (x, y) = φ (a(x) + b(x)φ(a(x1) + b(x1)y)). By derivation:

W̃x(x, y)

W̃y(x0, y)
=
a′(x) + b′(x)φ(a(x1) + b(x1)y)

b(x)b(x1)φ′(a(x1) + b(x1)y)
,

which has to be linear in y. Since a′ > 0, we deduce that
1+

b′(x)
a′(x)φ(z)

φ′(z) has to be linear in z.

First, assume that b′(x)
a′(x) is not constant and takes at least two values λ1 6= λ2. Since

1+λ1φ(z)
φ′(z) and 1+λ2φ(z)

φ′(z) are linear in z, (λ2−λ1)φ(z)
φ′(z) and φ(z)

φ′(z) are also linear. Together with
φ(0) = 0 and φ(1) = 1, we obtain that there exists ν ∈ R, such that ∀y ∈ [0, 1], φ(y) = yν .
The case where ν < 1 contradicts the continuous differentiability of φ, while ν > 1 contradicts
Wy(x, 0) > 0. Therefore φ has to be linear providing W (x, y) = a(x) + b(x)y. The regularity
and monotonicity conditions imposed in Definition 5, and the assumed normalization of U ,
lead to a(c) = 0, a(c) + b(c) = 1, a′(x) > 0 and a′(x) + b′(x) > 0. The condition b(x) < 1

comes from a + b and b being strictly increasing together with a(c) = 0 and a(c) + b(c) = 1.
We are thus left with the linear aggregators (14).

Second, we assume that b′(x)
a′(x) is constant, necessarily larger than −1 (since Wx > 0) and

different from zero (since Wy > 0). We define k 6= 0 with b′(x)
a′(x) = e−k − 1. By integration:

b(x) =
(
e−k − 1

)
a(x) + b0, with b0 ∈ R. (48)

Let h(z) = 1 +
(
e−k − 1

)
φ(z). Since

1+
b′(x)
a′(x)φ(z)

φ′(z) is linear in z, so is h(z)
h′(z) . φ(0) = 0 and

φ(1) = 1 imply h(0) = 1 and h(1) = e−k. By integration, there exists β > 0 such that:

∀z ∈ [0, 1], h(z) =
(

1 +
(
e
− k
β − 1

)
z
)β

and φ(z) =
1−

(
1− (1− e−

k
β )z
)β

1− e−k
. (49)

We can remark that for all z ∈ [0, 1]:

1 + (e−k − 1)φ(z)

φ′(z)
=

1

β

1− e−k

1− e−
k
β

(
1− (1− e−

k
β )z
)
. (50)

Let x2 ∈ C. Similarly to the definition of W̃ , we introduce a function Ŵ as follows:

∀(x, y) ∈ C × [0, 1], Ŵ (x, y) = W (x,W (x1,W (x2, y))).
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As in Lemma 7 and as with W̃ , one can show that FSD-monotonicity imposes that Ŵx

Ŵy
has

to be linear in y. Writing Ŵ (x, y) = φ (a(x) + b(x)φ(a(x1) + b(x1)φ(a(x2) + b(x2)y))) to

compute Ŵx

Ŵy
and using (50), we obtain that: 1−(1−e−

k
β )(a(x1)+b(x1)φ(a(x2)+b(x2)y))

φ′(a(x2)+b(x2)y) is linear in

y. However we know that 1−(1−e−k)φ(a(x2)+b(x2)y))
φ′(a(x2)+b(x2)y) is linear in y. So, after substitution in the

above expression, we have
(

1− (1− e−
k
β )a(x1)− (1−e−

k
β )b(x1)

(1−e−k)

)
φ(a(x2)+b(x2)y))
φ′(a(x2)+b(x2)y) is linear in y.

Thus, either φ is linear (case already considered) or 1− (1− e−
k
β )a(x1) = (1−e−

k
β )b(x1)

(1−e−k)
for any

x1 ∈ C. Equation (48) implies that b0 = 1−e−k

1−e−
k
β

and

∀x ∈ C, b(x) =
(

1− e−k
)( 1

1− e−
k
β

− a(x)

)
.

Then (49) implies that for all x and y:

φ(a(x) + b(x)y) =
1−

[(
1− (1− e−

k
β )a(x)

) (
1− (1− e−k)y

)]β
1− e−k

.

We define u : [0, 1]→ R as follows:

u(x) = − β

k(1− β)
log
(

1− (1− e−
k
β )a(x)

)
, or 1− (1− e−

k
β )a(x) = e

− k(1−β)u(x)
β , (51)

which, after renormalization, leads to the specification (15). Equation (51) implies u(c) = 0.

Moreover a(c) + b(c) = 1 imposes that a(c) = 1−e−k
1−β
β

1−e−
k
β

and u(c) = 1. The condition β < 1

results from the fact that the restriction of U to C∞ has to be monotonic. Indeed from (15)
and u(c) = 0, the utility associated with the consumption of the same c ∈ C for N periods
and c afterwards is (1− β)

∑N−1
i=0 βiu(c), which is monotone in c if and only if β < 1.

B.2.2 Existence and uniqueness

We wish to use the Banach fixed point theorem to show that the aggregator (15) defines a
unique utility function.33 We define C(D, [0, 1]) the set of continuous functions from D into
[0, 1]. We know that C∞ endowed with the product metric is a compact Polish space and
that D endowed with the Prohorov metric is also a compact Polish space. The metric space
(C(D, [0, 1]), ‖·‖∞) is thus a Banach space (e.g., Theorem 9.3 in Aliprantis and Burkinshaw
(1998)).

Denote by F(D,R) the set of all functions from D to R. We consider the mapping T from
33The proof in the case of the aggregator (14) is not provided as it would follow the same arguments.
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C(D, [0, 1]) into F(D,R) such that for F ∈ C(D, [0, 1]):

∀(c,m) ∈ D, TF (c,m) = (1− β)u(c)− β

k
logEm[e−kF ]. (52)

To use the fixed point theorem, we prove that T verifies Blackwell’s (1965) sufficient conditions
and is a contraction.

1. Let F ∈ C(D, [0, 1]) and (c,m) ∈ D. Since 0 ≤ u(c) ≤ 1 and 0 ≤ − 1
k log

(
Em

[
e−kF

])
≤

1, we also have 0 ≤ TF (c,m) ≤ 1. Consider (cn,mn)n≥0 ∈ D∞ that converges towards
(c,m) ∈ D. Since F is bounded and continuous, e−kF is also bounded (below by
e−k) and continuous, we have: logEmn [e−kF ] → logEm[e−kF ]. Since u is continuous,
TF (cn,mn)→ TF (c,m) and TF ∈ C(D, [0, 1]).

2. Let F1, F2 ∈ C(D, [0, 1]), such that ∀x ∈ D, F2(x) ≥ F1(x) ≥ 0. We have for all k
and for all m ∈ M(D), Em

[
e−kF2

]− 1
k ≥ Em

[
e−kF1

]− 1
k > 0 and − 1

k logEm
[
e−kF2

]
≥

− 1
k logEm

[
e−kF1

]
. Since β > 0, we deduce that T is increasing.

3. Let 0 ≤ A ≤ 1, F ∈ C(D, [0, 1]) and (c,m) ∈ D. Noticing that−β
k log

(
Em

[
e−k(F+A)

])
=

−β
k log

(
Em

[
e−kF

])
+ βA, it is straightforward that T (F +A)(c,m)− TF (c,m) = βA.

The map T is a contraction of modulus β ∈ (0, 1) on (C(D, [0, 1]), ‖·‖∞). The Banach fixed
point theorem implies that (15) admits a unique solution.

B.2.3 Sufficient conditions

We conduct the proof for the risk-sensitive case, showing that preference relation � is mixture-
stable. The Uzawa case is analogous. Let us consider τ ≥ 0, λ ∈ (0, 1), c1, c2 in Cτ+1 and
m1,m

′
1,m2,m

′
2 in M(D), such that (c1,m1) � (c2,m2) and (c1,m

′
1) � (c2,m

′
2). Denoting

ci = (c0
i , . . . , c

τ
i ) with i = 1, 2, we have

UA(ci,mi) = (1− β)
τ∑
j=0

βju(cji )−
β

kA
log
(
Emi

[
e−kAU

A
])
,

= − β

kA
log
(
e
− 1−β

β
kA
∑τ
j=0 β

ju(cji )Emi

[
e−kAU

A
])
. (53)

Since Eλmi+(1−λ)m′i
[·] = λEmi [·] + (1− λ)Em′i [·], we deduce that

UA(ci, λmi + (1− λ)m′i) = − β

kA
log
(
λe
− 1−β

β
kA
∑τ
j=0 β

ju(cji )Emi

[
e−kAU

A
]

(54)

+(1− λ)e
− 1−β

β
kA
∑τ
j=0 β

ju(cji )Em′i

[
e−kAU

A
])
.

Therefore, if UA(c1,m1) ≥ UA(c2,m2) and UA(c1,m
′
1) ≥ UA(c2,m

′
2), (53) and (54) readily

imply that UA(c1, λm1 + (1− λ)m′1) ≥ UA(c2, λm2 + (1− λ)m′2).
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B.3 Proof of Proposition 2

Consider normalized utility functions UA and UB (and their corresponding aggregators WA

and WB) that represent two FSD-monotone KP-recursive preference relations, whose re-
strictions to C∞ are identical. Let us assume that one of them (e.g., UA) is not a risk-
sensitive utility function. Proposition 1 implies that WA(x, y) = a1(x) + b1(x)y for some
non-constant function b1. Such preferences do not fulfill the assumption of weak separa-
bility and therefore cannot have the same restriction over C∞ as risk-sensitive preferences,
which are weakly separable. Thus, UB must also correspond to an aggregator WB such
that WB(x, y) = a2(x) + b2(x)y for some non-constant function b2. In order to prove that
WA = WB, we first state the following simple result:

Lemma 8 (Aggregators with identical ordinal preferences) Consider WA and WB

two aggregators associated to normalized KP-recursive utility functions representing the same
preferences over C∞.

Then there exists an increasing function ψ such that ψ(0) = 0, ψ(1) = 1 and:

∀(x, y) ∈ C × [0, 1], ψ
(
WA(x, y)

)
= WB(x, ψ(y)).

Proof. Consider the utility functions UA and UB corresponding to the aggregators WA and
WB. Since they represent the same ordinal preferences, there exists an increasing function
ψ, such that for all x ∈ C∞ we have UB(x) = ψ

(
UA(x)

)
. From U i(c, c, . . .) = 0 and

U i(c, c, . . .) = 1 (i = A,B), we have ψ(0) = 0, ψ(1) = 1. For any (c0, c1, . . .) ∈ C∞, we have:
UB(c0, c1, ...) = WB(c0, U

B(c1, ...)) = WB(c0, ψ(UA((c1, ...)). We also have: UB(c0, c1, ...) =

ψ(UA(c0, c1, ...)) = ψ(WA(c0, U
A(c1, ...))). Noting y = UA(c1, c2, . . .) which covers [0, 1], we

deduce that ψ
(
WA(c0, y)

)
= WB(c0, ψ(y)) for all (c0, y) ∈ C × [0, 1].

We now terminate the proof. Lemma 8 implies that there exists an increasing function ψ
with ψ(0) = 0 and ψ(1) = 1, such that for all (x, y) ∈ C × [0, 1]:

ψ (a1(x) + b1(x)y) = a2(x) + b2(x)ψ(y). (55)

Since WA and WB are continuously differentiable on C × [0, 1], ai and bi also are (on C) for
i = 1, 2.

As a preliminary remark, it would be straightforward to show that for any y ∈ [0, 1],
the application x 7→ ai(x) + bi(x)y (i = 1, 2) is a strictly increasing bijection from C into
[bi(c)y, ai(c) + bi(c)y]. Moreover ai(c) + bi(c)y < 1 if and only if y < 1, and bi(c)y > 0 if and
only if y > 0. Remark also that the properties of ai and bi imply that y ∈ [bi(c)y, ai(c)+bi(c)y]

for any y ∈ [0, 1].
Let Y = {z ∈ [0, 1]|ψ is continuously derivable on [0, z]}. Using (55) and our preliminary

remark with y = 0, we deduce that ψ is continuously differentiable on [0, a1(c)]. So, Y 6= ∅
and Y is also bounded by 1. Let y = supY with 0 < a1(c) ≤ y ≤ 1. If y < 1, our preliminary
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remark with y = y and (55) contradict the definition of y. So y = 1 and ψ is continuously
differentiable on [0, 1]. After taking the derivative of (55) with respect to y, the same strategy
can be used to show that ψ′ is continuously differentiable and strictly positive. Since b1 and
b2 share the same properties, we can compute the second-order derivative of (55), providing
b1(x)ψ

′′

ψ′ (a1(x) + b1(x)y) = ψ′′

ψ′ (y). The preliminary remark implies that for any y ∈ [0, 1],

there exists xy ∈ C such that a1(xy) + b1(xy)y = y. We thus obtain (1 − b1(xy))
ψ′′

ψ′ (y) = 0.
Since b1(xy) < 1, we deduce that ψ′′ = 0 which, with ψ(0) = 0 and ψ(1) = 1, imply that
ψ(x) = x. From (55), it follows that a1(x) = a2(x) and b1(x) = b2(x) and finally WA = WB.

B.4 Proof of Proposition 3

B.4.1 Weak risk aversion

We prove that if kA ≥ 0, we have UA(E[(c,m)]) ≥ UA(c,m) for any (c,m) ∈ ∪t≥0Dt, the
result extending to any (c,m) ∈ D by continuity. Let us consider t ≥ 0, (c,m) ∈ Dt and
use representation (17). We have V A

t = (1 − β)
∑∞

i=0 β
iu(ci), and for any 0 ≤ τ ≤ t − 1:

V A
τ = φ−1

A,τEτ
[
φA,τ (V A

τ+1)
]
with φA,τ : x 7→ −βτ+1

kA
e
− kA
βτ+1 x. Since φA,τ is concave for any

τ whenever kA ≥ 0, Jensen’s inequality implies that V A
τ ≤ Eτ

[
V A
τ+1

]
, or after iteration

V A
0 ≤ E0[V A

t ] = E0[(1 − β)
∑∞

i=0 β
iu(c̃i)]. The function u being concave, we eventually

obtain V A
0 ≤ (1− β)

∑∞
i=0 β

iu(E0[c̃i]), which concludes the proof.

B.4.2 Weak comparative risk aversion

We assume that kA > kB and kA, kB 6= 0 (the case where either kA or kB equals zero can

be treated similarly). For i = A,B, set V i = − e−kiU
i

ki
, which represents the same preferences

as U i and fulfills the recursion (9) with the aggregator W i(x, y) = − 1
ki
e−ki(1−β)u(x)(−kiy)β .

Consider the function ψA,B defined on Im(V B) by ψA,B(y) = −(−kBy)kA/kB

kA
. This function is

increasing and concave. For any deterministic consumption path (c0, c1, . . .) ∈ C∞, we have

V i(c0, c1, . . .) =
− exp(−ki(1−β)

∑∞
t=0 β

tu(ct))
ki

and therefore V A(x) = ψA,B(V B(x)). Moreover for
all c ∈ C and y ∈ Im(V B), we have ψA,B(WB(c, y)) = WA(c, ψA,B(y)).

We now show by induction that for all t ≥ 0 and all (c,m) ∈ Dt, ψA,B(V B(c,m)) ≥
V A(c,m). It holds for t = 0 since V A(x) = ψA,B(V B(x)) for all x ∈ D0 = C∞. Assume that
it holds up to t− 1 and let (c,m) ∈ Dt:

ψA,B(V B(c,m)) = ψA,B(WB(c, Em[V B])) = WA(c, ψA,B(Em[V B]))

≥WA(c, Em[ψA,B(V B)]) ≥WA(c, Em[V A])) = V A(c,m),

where the first inequality is a consequence of Jensen inequality and of WB being increasing
with respect to its second argument, while the second comes from the induction hypothesis.

Since ∪t≥0Dt is dense in D, we deduce by continuity that ψA,B(V B(c,m)) ≥ V A(c,m)

for all (c,m) ∈ D. We deduce that for all x ∈ C∞ and (c,m) ∈ D, V A(c,m) ≥ V A(x) ⇒
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V B(c,m) ≥ V B(x), which terminates the proof.

B.5 Proof of Proposition 5

We consider an agent with risk-sensitive preferences, whose risk aversion parameter is k. The
utility of an independently distributed consumption stream (c̃t)t≥1 is (see equation (24)):
Uk(c0, c̃1, . . .) = (1− β)u(c0)− 1

k

∑∞
j=1 β

j logEj−1

[
e−k(1−β)u(c̃j)

]
. With this simple additive

structure, the optimal insurance demand qkt against the risk of date t solves:

ptβ
−t =

Et−1

[
α̃tu
′(ỹt + qkt α̃t)e

−k(1−β)u(ỹt+qkt α̃t)
]

u′(y0 −
∑∞

i=1 piq
k
i )Et−1

[
e−k(1−β)u(ỹt+qkt α̃t)

] . (56)

We want to compute the total derivative of (56) with respect to k. First, we take the
derivative with respect to k while keeping other parameters constant. We denote c0 = y0 −∑∞

i=1 piq
k
i and c̃t = ỹt + qkt α̃t. Since shocks are bounded, there exists a constant At ≥ 0 such

that ãt = At + α̃t ≥ 0 (t ≥ 1). We define the following functions:

V0(k) = u′(c0), Va,t(k) =
Et−1[ãtu

′(c̃t)e
−k(1−β)u(c̃t)]

Et−1[e−k(1−β)u(c̃t)]
, VA,t(k) =

AtEt−1[u′(c̃t)e
−k(1−β)u(c̃t)]

Et−1[e−k(1−β)u(c̃t)]
,

such that (56) becomes: ptβ−tt =
Va,t(k)−VA,t(k)

V0(k) . We have:

Va,t(k)

VA,t(k)
=
AtEt−1[u′(c̃t)e

−k(1−β)u(c̃t)] + covt−1(ãt, u
′(c̃t)e

−k(1−β)u(c̃t))

AtEt−1[u′(c̃t)e−k(1−β)u(c̃t)]
> 1,

because α̃t and c̃t (and therefore ãt and c̃t) are anticomonotone.34 Moreover:

1

1− β
∂

∂k
(
Va,t(k)

VA(k)
) =

Et−1[u(c̃t)u
′(c̃t)e

−k(1−β)u(c̃t)]

Et−1[u′(c̃t)e−k(1−β)u(c̃t)]

Et−1[ãtu
′(c̃t)e

−k(1−β)u(c̃t)]

Et−1[u′(c̃t)e−k(1−β)u(c̃t)]

− Et−1[ãtu(c̃t)u
′(c̃t)e

−k(1−β)u(c̃t)]

Et−1[u′(c̃t)e−k(1−β)u(c̃t)]

= −c̃ovu
′(c̃t)e−k(1−β)u(c̃t)

t−1 (u(c̃t), ãt) > 0,

again because ãt and c̃t are anticomonotone. Similarly, we have:

1

1− β
∂

∂k
(
VA,t(k)

V0(k)
) = − At

u′(c0)
c̃ove

−k(1−β)u(c̃t)

t−1 (u(c̃t), u
′(c̃t)) > 0,

34Purchasing a quantity of asset qkt larger than one cannot be optimal, as this would be dominated (in the
sense of SSD) by choosing a quantity equal to one. This imposes that qkt ≤ 1 and the mentioned anticomono-
tonicity.
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where the covariance operators are defined in (39) and At ≥ 0. We therefore deduce:

∂

∂k
(
Va(k)− VA(k)

V0(k)
) =

∂

∂k

(
VA(k)

V0(k)
(
Va(k)

VA(k)
− 1)

)
≥ 0. (57)

Second, we want to take the derivative of (56) with respect to qkt , while keeping k constant.
Denoting by Vk(qkt ) the right-hand side term of (56) and defining the variance Ṽ e−k(1−β)u(c̃t)

t−1

as in (38), we obtain after some algebra:

∂Vk(q
k
t )

∂qkt

∣∣∣∣
k

=
Et−1

[
α̃2
tu
′′(ỹt + qkt α̃t)e

−k(1−β)u(ỹt+qkt α̃t)
]

u′(y0 −
∑∞

i=1 piq
k
i )Et−1

[
e−k(1−β)u(ỹt+qkt α̃t)

]
+ β−ju′(y0 −

∞∑
i=1

piq
k
i )
u′′(y0 −

∑∞
i=1 piq

k
i )

u′(y0 −
∑∞

i=1 piq
k
i )

− k(1− β)
Ṽ e−k(1−β)u(c̃t)
t−1

[
α̃tu
′(ỹt + qkt α̃t)

]
u′(y0 −

∑∞
i=1 piq

k
i )

< 0. (58)

Using previous notations, the total derivative of (56) with respect to k yields:

∂

∂k
(
Va(k)− VA(k)

V0(k)
) +

∂Vk(q
k
t )

∂qkt

∣∣∣∣
k

∂qkt
∂k

= 0.

From inequalities (57) and (58), we deduce ∂qkt
∂k ≥ 0.

B.6 Proof of Proposition 6

One of the technical difficulties is that the consumption positivity constraints generate po-
tentially binding borrowing constraints. Indeed, as consumption has to be nonnegative at all
dates, agents cannot borrow more than what they may be able to repay, given their future
income. Formally, at any date t, the saving has to be greater than a (negative) lower bound
st that depends on the income process. This bound is deterministic and can be time-varying
as the income process is not assumed to be stationary. The program (29) can be expressed as
follows:

V k
t (wt, y

t) = max
st≥st

u(yt − st + wt)−
β

k
logEte

−kV kt+1(wt+1,yt+1), (59)

s.t. wt+1 = Rst.

To shorten the notation, we introduce W k
t defined by:

W k
t (wt, y

t) = −kV k
t (wt, y

t) = min
st≥st

−ku(yt − st + wt) + β logEte
Wk
t+1(Rst,yt+1). (60)

53



We denote W k
t,w and W k

t,k the derivatives of W k
t with respect to wealth wt and risk aversion

k respectively. The first-order condition provides:

ku′(ct) ≥ −βR
Et

[
W k
t+1,w(wt+1, y

t+1)eW
k
t+1(wt+1,yt+1)

]
Et

[
eW

k
t+1(wt+1,yt+1)

] , (61)

where the equality holds if st > st. The envelop theorem yields the following equalities (which
are valid whether the constraint st ≥ st is binding or not):

W k
t,w(wt, y

t) = −ku′(yt − st + wt) = −ku′(ct) (62)

W k
t,k(wt, y

t) = −u(ct) + βEt

W k
t+1,k

eW
k
t+1(wt,yt+1)

Et

[
eW

k
t+1(wt,yt+1)

]
 (63)

We now state following lemma.

Lemma 9 (Comonotonicity of income and consumption) In the setup of Proposition
6, at any date t ≥ 0, the optimal consumption c̃t and the income ỹt are comonotone.

Proof. We prove the result for (ỹi)i≥0 ∈ ∪T≥0DT , as it then extends to D by continuity. Let
T ≥ 0 and (ỹi)i≥0 ∈ DT . We prove by reverse induction on i that (i) c̃i and ỹi are comonotone
and that (ii) ỹi and W k

i are anticomonotone.
At date i = T , there is no uncertainty left. First, assume that consumption positivity

constraints do not bind. Equation (61) implies for any τ ≥ 0, u′(c̃T ) = (βR)τu′(c̃T+τ ). So
c̃T and c̃T+τ (for any τ ≥ 0) are comonotone. The intertemporal budget constraint at date
T being ỹT +

∑∞
τ=1

ỹT+τ

Rτ +RsT−1 =
∑∞

τ=0
c̃T+τ

Rτ , we deduce that ỹT and c̃T are comonotone.
Since W k

T = −k
∑∞

τ=0 β
τu(c̃T+τ ), it is also clear that ỹT and W k

T are anticomonotone.
Second, assume that the consumption positivity constraint binds at date T + τ for some

τ ≥ 0. Note that due to the absence of uncertainty after date T , the consumption positivity
constraint also binds at all later dates T+τ ′ > T+τ . Let y

T,τ
be the smallest realization of ỹT

for which the consumption positivity constraint binds at date t+ τ . Because of the stochastic
monotonicity assumption, for all realizations of ỹT smaller than y

T,τ
, the consumption posi-

tivity constraint will also bind at date t+ τ (and at all later dates). Therefore, c̃T and c̃T+τ

(for any τ ≥ 0) are also comonotone when consumption positivity constraint binds at some
date. We deduce that c̃T and ỹT are comonotone, and that ỹT and W k

T are anticomonotone.
We have shown that points (i) and (ii) hold for i = T . We now proceed by induction

showing that if they hold for 0 < i ≤ T , they also hold for i − 1. When consumption
positivity constraints do not bind, the Euler equation (61) together with (62) implies:

u′(c̃i−1) = (βR)Ei−1

[
u′(c̃i)

eW
k
i (wi,y

i)

Ei−1[eW
k
i (wi,yi)]

]
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Using the induction hypothesis, we know that u′(c̃i) eW
k
i (wi,y

i)

Ei−1[eW
k
i
(wi,y

i)]
and ỹi are anticomonotone.

Since the income process is stochastically monotone, we deduce that u′(c̃i−1) is non-increasing
with ỹi−1, meaning that c̃i−1 and ỹi−1 are comonotone. Using definition (60) ofW k

i−1 together
with the induction hypothesis and the comonotonicity of c̃i−1 and ỹi−1, we obtain that W k

i−1

and ỹi−1 are anticomonotone.
When consumption positivity constraints bind, denote by y

i−1
the cut-off value of ỹi−1

below which the Euler equation does not hold. For any realization of ỹi−1 below y
i−1

, the
saving constraint at date i is binding: the consumption at date i varies exactly as ỹi−1.
Therefore, when the Euler equation does not hold, c̃i−1 and ỹi−1 are also comonotone and
W k
i−1 and ỹi−1 are anticomonotone.
We now complete the proof of Proposition 6. The case where the inequality (61) is strict,

indicating a binding borrowing constraint st = st is trivial, as we then have by continuity
∂st
∂k = 0. We now assume that (61) is an equality. We take the derivative of this equality.
Dropping the argument (wt+1, y

t+1) of W k
t+1 and using the notation defined in (37), we get:

−u′(ct) + ku′′(ct)
∂st
∂k

= βR
∂Ẽe

Wk
t+1

t

[
W k
t+1,w

]
∂st

∣∣∣∣∣∣
k

∂st
∂k

+ βR
∂Ẽe

Wk
t+1

t

[
W k
t+1,w

]
∂k

∣∣∣∣∣∣
st

. (64)

We investigate the signs of both derivatives in (64). We start with
∂Ẽe

Wk
t+1

t [Wk
t+1,w]

∂st

∣∣∣∣∣
k

. Using

wt+1 = Rst, we obtain:

1

R

∂Ẽe
Wk
t+1

t

[
W k
t+1,w

]
∂st

∣∣∣∣∣∣
k

=
Et

[
W k
t+1,wwe

Wk
t+1

]
Et

[
eW

k
t+1

] +
Et

[
(W k

t+1,w)2eW
k
t+1

]
Et

[
eW

k
t+1

] −
Et

[
W k
t+1,we

Wk
t+1

]2

Et

[
eW

k
t+1

]2 ,

= Ẽe
Wk
t+1

t

[
W k
t+1,ww

]
+ Ṽ e

Wk
t+1

t

[
W k
t+1,w

]
> 0, (65)

since W k
t+1 is convex in wealth (the indirect utility is concave), and the variance is positive

(the variance operator is defined in equation (38)). We then deduce from (64) that the sign of

∂st
∂k is opposite to the one of u′(ct) + βR

∂Ẽe
Wk
t+1

t [Wk
t+1,w]

∂k

∣∣∣∣∣
st

. Note that equation (62) implies

that
∂Wk

t+1,w

∂k

∣∣∣∣
st

= −u′(ct+1). We thus have:

∂Ẽe
Wk
t+1

t

[
W k
t+1,w

]
∂k

∣∣∣∣∣∣
st

= −Ẽe
Wk
t+1

t

[
u′(ct+1)

]
+ Ẽe

Wt+1

t

[
W k
t+1,wW

k
t+1,k

]
− Ẽe

Wk
t+1

t

[
W k
t+1,w

]
Ẽe

Wt+1

t

[
W k
t+1,k

]
.
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Using the Euler equation (61) and equality (62) we get:

u′(ct) + βR
∂Ẽe

Wk
t+1

t

[
W k
t+1,w

]
∂k

∣∣∣∣∣∣
st

= −kβR c̃ove
Wk
t+1

t (u′(ct+1),W k
t+1,k). (66)

Observe now that, from equation (63), we can derive by iteration:

W k
t+1,k = −

∞∑
τ=1

βτ−1Et+1

u(c̃t+τ )
e
∑τ
j=2W

k
t+j∏τ

j=2Et+j−1

[
eW

k
t+j

]
 ,

= −
∞∑
τ=1

βτ−1Êt+τt+1 [u(c̃t+τ )] , (67)

where Êt+τt+1 [X] = Et+1

X e
∑τ
j=2W

k
t+j∏τ

j=2 Et+j−1

[
e
Wk
t+j

]
 is an expectation operator under a new mea-

sure (Êt+τt+1 [1] = 1 and e
∑τ
j=2W

k
t+j∏τ

j=2 Et+j−1

[
e
Wk
t+j

] > 0 for any t, τ). Using this notation, we have:

u′(ct) + βR
∂Ẽe

Wk
t+1

t

[
W k
t+1,w

]
∂k

∣∣∣∣∣∣
st

= kβR
∞∑
τ=1

βτ−1ĉovt+τt

(
u′(c̃t+1), u(c̃t+τ )

)
(68)

where ĉovt+τt (·, ·) is the covariance operator associated to the expectation operator Êt+τt [·].
From Lemma 9, we know that c̃t and ỹt are comonotone for any t ≥ 0. The stochastic
monotonicity property of the income process then implies that ĉovt+τt (u′(c̃t+1), u(c̃t+τ )) < 0

(see Lehman, 1966, for instance). From Equation (68), we get u′(ct)+βR
∂Ẽe

Wt+1
t [Wk

t+1,w]
∂k

∣∣∣∣
st

<

0 meaning that ∂st
∂k > 0.

B.7 Proof of Proposition 7

The risk free rate. Define:

W k
t = −kUkt = −ku(ct) +

β

k
logEt

[
eW

k
t+1

]
. (69)

Taking the derivative of the equation (31) that defines Rt, we obtain:

−(1− β)u′(ct)

βR2
t

∂Rt
∂k

=Et

u′(c̃t+1)W k
t+1,ke

Wk
t+1

Et

[
eW

k
t+1

]
−Et

u′(c̃t+1)eW
k
t+1

Et

[
eW

k
t+1

]
Et
W k

t+1,ke
Wk
t+1

Et

[
eW

k
t+1

]
, (70)
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where Wt+1,k is the derivative of W k
t+1 with respect to k. By taking the derivative of (69)

we obtain that the W k
t fulfill a recursive equation that writes exactly as (63). We can then

follow the proof of Proposition 6 to obtain an expression identical to (67) and eventually:

(1− β)u′(ct)

βR2
t

∂Rt
∂k

=
∞∑
τ=1

βτ−1ĉovt+τt

(
u′(c̃t+1), u(c̃t+τ )

)
, (71)

where ĉovt+τt (·, ·) is the covariance operator associated to Êt+τt [·], as in the proof of Proposi-
tion 6. Since the consumption process is stochastically monotone, we deduce that the covari-
ance in (71) is negative and ∂Rt

∂k < 0.

The market price of risk. The derivation of the expression (32) of the market price of
risk yields:

Et

[
u′(c̃t+1)eW

k
t+1

]
σt
∂σt
∂k

= Et

W k
t+1,k

(
u′(c̃t+1)eW

k
t+1

) (
u′(c̃t+1)eW

k
t+1

)
Et

[
u′(c̃t+1)eW

k
t+1

]


−Et

W k
t+1,k

u′(c̃t+1)eW
k
t+1

Et

[
u′(c̃t+1)eW

k
t+1

]
Et
(u′(c̃t+1)eW

k
t+1

) u′(c̃t+1)eW
k
t+1

Et

[
u′(c̃t+1)eW

k
t+1

]
 .

Using again that an expression identical to (67) holds, we have:

Et

[
u′(c̃t+1)eW

k
t+1

]
σt
∂σt
∂k

=−
∞∑
τ=1

βτ−1Et

Êt+τt+1

[
u′(c̃t+1)eW

k
t+1u(c̃t+τ )

] u′(c̃t+1)eW
k
t+1

Et

[
u′(c̃t+1)eW

k
t+1

]
 (72)

+

∞∑
τ=1

βτ−1Et

Êt+τt+1 [u(c̃t+τ )]
u′(c̃t+1)eW

k
t+1

Et

[
u′(c̃t+1)eW

k
t+1

]
Et
Êt+τt+1

[
u′(c̃t+1)

] u′(c̃t+1)eW
k
t+1

Et

[
u′(c̃t+1)eW

k
t+1

]
.

We now define the expectation operator Et+τt [X] = Et

Êt+τt+1

X u′(c̃t+1)e
Wk
t+1

Et

[
u′(c̃t+1)e

Wk
t+1

]
. Defin-

ing the associated covariance covt+τt (·, ·), equation (72) becomes:

Et

[
u′(c̃t+1)eW

k
t+1

]
σt
∂σt
∂k

= −
∞∑
τ=1

βτ−1covt+τt

(
u′(c̃t+1)eW

k
t+1 , u(c̃t+τ )

)
. (73)

As consumption follows a stochastically monotone process, we can prove, like in Lemma 9,
that W k

t+1 and c̃t+1 are anticomonotone. Thus u′(c̃t+1)eW
k
t+1 and c̃t+1 are anticomonotone.

Using again that consumption follows a stochastically monotone process, we eventually deduce
that the covariance in (73) is negative and σt ∂σt∂k > 0.
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