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1 Proof of Proposition 1

For bond holdings, we compute the marginal rate of substitution Et[
(
cix,t+1/c

i
x,t

)−γx |x] at
date t for a household of type x (conditional on its type). We obtain:

Et[exp{−γx∆ log cix,t+1}|x] =

=
1

βxR
f
t+1

Et

[
exp

{
−κxωt+1 − σxε

i
t+1 − ψx

√
ωt+1ut+1

}]
=

1

βxR
f
t+1

Et

[
exp

{
σ2
x/2− κxωt+1 − ψx

√
ωt+1ut+1

}]
=

1

βxR
f
t+1

Et

[
exp

{
σ2
x/2 + (ψ2

x/2− κx)ωt+1

}]
.

2 Proof of Proposition 2

For stock holdings, we compute the quantity Et[R
s
t+1

(
cix,t+1/c

i
x,t

)−γx |x]

Et[exp{logRs
t+1 − γx∆ log cix,t+1}|x] =

=
1

βx
Et

[
exp

{
µωt+1 +

√
ωt+1ut+1 − κxωt+1 − σxε

i
t+1 − ψx

√
ωt+1ut+1

}]
=

1

βx
Et

[
exp

{
σ2
x/2 + µωt+1 − κxωt+1 + (1− ψx)

√
ωt+1ut+1

}]
=

1

βx
Et

[
exp

{
σ2
x/2 + (µ− κx + 1/2 + ψ2

x/2− ψx)ωt+1

}]
=

1

βx
Et

[
exp

{
σ2
x/2 + (µ+

1

2
− ψx +

ψ2
x

2
− κx)ωt+1

}]
.

3 Monte Carlo results

We assess the finite sample accuracy of our estimation method by Monte Carlo simulation.

The structural parameters are the II empirical parameter estimates reported in the main

paper. These II estimates are then plugged into the limited participation model to generate

100 samples, of the same size as our empirical data. Finally, for each of the 100 data samples,

we compute the II estimates of the 24 parameters.

Our results are summarized in the boxplots of Figures 3–3.1 True parameter values

1Boxes provide the first, second, and third quartiles of the II estimates and whiskers provide the farthest
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Figure 1: Boxplots of 100 MC estimates of the structural parameters βn, βb, βs,
γn, γb, γs, κn, κb, κs, σn, σb, and σs. True parameters are reported with horizontal
lines.
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Figure 2: Boxplots of 100 MC estimates of the structural parameters ã, a, ξ, ρ,
σζ, ψn, ψb, ψs, µ, ω, ϕ, and σ. True parameters are reported with horizontal lines.
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are reported with horizontal lines. These figures show that all parameters are correctly

estimated since true values are covered by the intervals given by the whiskers of the boxplots.

Most of the 24 parameters are very precisely estimated since the true values are inside the

boxes. The only exceptions are κs, ψb, and ψs, which are less precisely estimated than the

other parameters. To check whether the parameters are consistently estimated, we report

in Table 1 the Monte Carlo coverages (95%-COVERAGE) of the 95%-confidence intervals,

obtained with the 100 Monte Carlo estimates plotted in the boxplots2. Under each coverage

we report the two-sided p-values in parentheses. This Table shows that most parameters,

including ψb and ψs, are accurately estimated as the 95%-coverages are not significantly

different from the 95% at the 5% significance level. The only two parameters that provide

coverages that are significantly different from 95% at the 5% level (p-values equal to 0.0314)

are κs and ϕ.

4 Robustness checks

We assess the sensitivity of our empirical results with respect to the choice of the number of

pseudo-datasetsM used in indirect inference estimation. We also investigate the sensitivity of

the results with respect to measurement errors and with respect to the choice of distributional

assumptions in our limited participation model.

4.1 Alternative number of pseudo-datasets

According to Gouriéroux et al. (1993) asymptotic standard errors are multiplied by factor
√
1 +M−1 (as asymptotic variance is multiplied by (1 + M−1)). The choice of M = 5

ensures that the loss in standard deviation due to simulations is less than 10% (
√
1 + 5−1 =

1.0954 < 1.1). We run the empirical estimation with various numbers of pseudo-datasets

M = 4, 5, 6 and report in Table 2 the parameter estimates. We report in the bottom row the

proportion of correctly identified stockholders π̂S for eachM , along with 2-sided p-values (in

II estimates that are within 1.5 times the interquartile range from the first and third quartiles. II estimates
that are outside the whiskers are drawn by dots.

295%-COVERAGE is calculated as the average number of times, across the Monte Carlo trials, that
θ0j , i.e., the true value of the jth parameter, is contained in the univariate confidence interval θ̂ij ± σ̂j1.96,

where σ̂j is the standard deviation for the jth parameter over the 100 Monte Carlo replications and θ̂ij is the
estimator of the jth parameter in the ith Monte Carlo trial.
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Table 1: Coverage probabilities of 95% confidence intervals

Symbol 95%-COVERAGE

βn 0.95
(1.0000)

βb 0.93
(0.4918)

βs 0.93
(0.4918)

γn 0.94
(0.8200)

γb 0.92
(0.2462)

γs 0.97
(0.4918)

κn 0.96
(0.8200)

κb 0.93
(0.4918)

κs 0.90∗
(0.0341)

σn 0.97
(0.4918)

σb 0.92
(0.2462)

σs 0.97
(0.4918)

ã 0.94
(0.8200)

a 0.93
(0.4918)

ξ 0.95
(1.0000)

ρ 0.97
(0.4918)

σζ 0.95
(1.0000)

ψn 0.94
(0.8200)

ψb 0.93
(0.4918)

ψs 0.94
(0.8200)

µ 0.95
(1.0000)

ω 0.95
(1.0000)

ϕ 0.90∗
(0.0341)

σ 0.96
(0.8200)
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parentheses) associated with the two-sample z test for proportions comparing π̂S of M = 4

or M = 6 to the M = 5 case. This table shows that estimation results are essentially the

same as π̂S values are not significantly different from the M = 5 case and we could have

used a simulation number of M = 4 for instance.

Table 2: Empirical estimates for various number of simulated pseudo-data series.
Symbol Number of pseudo-datasets M

4 5 6

βn 0.5247 0.5181 0.5239
βb 0.9461 0.9701 0.9587
βs 0.8032 0.8917 0.9077
γn 3.5253 2.3552 2.1366
γb 0.6740 0.4614 0.4201
γs 3.0990 1.5709 1.5839
κn 196.5766 201.5889 206.0849
κb 13.2834 6.3829 9.1954
κs 54.6875 27.8652 23.3907
σn 1.3752 0.7255 0.5544
σb 0.4617 0.3141 0.2864
σs 0.6218 0.3125 0.3183
ã 7.0483 6.6840 6.2231
a 1.4345 1.4272 1.4305
ξ 0.0115 0.0114 0.0114
ρ 0.9909 0.9909 0.9909
σζ 0.1799 0.1798 0.1798
ψn −4.4986 −5.2972 −5.9781
ψb −0.3253 −0.1482 −0.2564
ψs −1.2669 −0.6872 −0.6225
µ 6.5087 6.9049 7.4469
ω 0.0031 0.0030 0.0030
ϕ 0.0322 0.0444 0.0443
σ 0.0046 0.0050 0.0053
π̂S 93.60%

(0.2191)
93.31% 93.19%

(0.2334)

4.2 Measurement errors

We include measurement errors in the following way. For each household i, we replace

the individual standard normally distributed increments in the log consumption growth and
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income processes with Student t3 contaminated distributions of the form: (1−ϵ)N (0, 1)+ϵ t3

with ϵ ∈ [0, 1]. Concretely, the originally standard normal increments εit+1 are replaced with

(1−Bi
t+1)ε

i
t+1 +Bi

t+1υ
i
t+1

where {Bi
t+1} are independent identically distributed Bernoulli variables with P(Bi

t+1 = 1) =

ϵ and υit+1 are Student t3 variables. We use the same contamination for the zit variables in

the revenue. The parameter estimates are reported in Table 3 below.

Figure 3: Proportion of correctly identified stockholders π̂S for various contami-
nations ϵ.

0.0 0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

ε

π̂
S

We report in the bottom row and in Figure 4.2 the proportion of correctly identified

stockholders π̂S for various contaminations ϵ, along with 2-sided p-values (in parentheses)

associated with the two-sample z test for proportions comparing π̂S of each contaminated
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Table 3: Empirical estimates for various types of increments
Symbol Contamination ϵ

0 0.05 0.10 0.15 0.20 0.40 0.60 0.80 1.00

βn 0.5181 0.5307 0.5321 0.5090 0.5055 0.5962 0.5446 0.5317 0.5386
βb 0.9701 0.9690 0.9740 0.9773 0.9753 0.9596 0.9700 0.9777 0.9769
βs 0.8917 0.8976 0.8863 0.9029 0.8924 0.8962 0.8850 0.8797 0.8832
γn 2.3552 2.2257 2.2496 2.6308 2.5521 1.8405 2.0580 2.2354 2.2024
γb 0.4614 0.4772 0.4595 0.5144 0.4919 0.5537 0.4531 0.5567 0.5997
γs 1.5641 1.4889 1.5423 1.4110 1.4779 1.5731 2.0035 1.8096 1.8978
κn 201.5889 194.9222 193.1515 205.1788 208.6552 158.2293 188.8353 195.4955 192.3885
κb 6.3829 6.4930 5.1716 4.4850 4.8390 8.6723 6.3534 3.6858 4.0062
κs 27.8652 26.3135 29.5321 24.7952 27.9746 26.9975 30.0415 32.6101 31.5191
σn 0.7255 0.6661 0.6689 0.8297 0.7683 0.4957 0.4811 0.5152 0.4803
σb 0.3141 0.3240 0.3032 0.3322 0.3099 0.3173 0.2357 0.2570 0.2508
σs 0.3125 0.2945 0.2995 0.2758 0.2842 0.2978 0.3733 0.3141 0.3263
ã 6.6840 6.5855 6.3534 6.5753 6.5633 6.0937 5.8873 5.6309 5.6364
a 1.4272 1.4320 1.4227 1.4180 1.4054 1.3658 1.3159 1.2012 1.1434
ξ 0.0114 0.0115 0.0115 0.0114 0.0112 0.0114 0.0114 0.0113 0.0113
ρ 0.9909 0.9909 0.9908 0.9909 0.9910 0.9909 0.9909 0.9909 0.9909
σζ 0.1798 0.1787 0.1759 0.1739 0.1720 0.1642 0.1569 0.1496 0.1425
ψn -5.2972 -5.1434 -5.0876 -5.3488 -5.4292 -4.1537 -5.0501 -5.2241 -5.1732
ψb -0.1482 -0.1468 -0.1081 -0.0901 -0.0842 -0.2060 -0.1447 -0.0488 -0.0822
ψs -0.6872 -0.6495 -0.7437 -0.6087 -0.7140 -0.6713 -0.7083 -0.8180 -0.7440
µ 6.9049 6.9044 6.9036 6.9042 6.9058 6.9052 6.9033 6.9030 6.9038
ω 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030
ϕ 0.0444 0.0453 0.0455 0.0455 0.0415 0.0437 0.0471 0.0473 0.0468
σ 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050
π̂S 93.39% 93.38%

(0.4854)
93.22%
(0.2446)

93.24%
(0.2923)

93.14%
(0.1819)

87.33%
(0.0000)

80.86%
(0.0000)

42.32%
(0.0000)

14.78%
(0.0000)

(ϵ > 0) case to the uncontaminated (ϵ = 0) case. The parameter estimates are very similar

and accuracies of the estimated stock market participations π̂S are good and similar for

contaminations up to ϵ ≤ 0.2, and π̂S deteriorates substantially beyond this value. This

means that our estimation method can withstand measurement errors up to 20%. This

figure also shows that the Gaussian distribution is a legitimate assumption for the errors.

Considering contaminated Gaussian errors does not improve the accuracy of uncovered stock

participation, it actually significantly deteriorates the performance when contamination rate

is 40% or beyond.
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4.3 Alternative specifications

The volatility process ω̃t in (2.3) is not necessarily positive, and needs to be modified in order

to enter the square root in (2.2). Equation (2.4) is based on a smooth and positive trans-

formations of ω̃t. We tried several alternatives of the transformation in (2.4). Concretely,

in equation (2.4), we replaced ω2/(2ω − ω̃t) with two alternative functions f(ω̃t) that are

first order equivalent to (2.4) at ω̃t = ω, i.e. satisfying f(ω) = ω, limω̃t→−∞ f(ω̃t) = 0 and

∂f/∂ω̃t|ω̃t=ω = 1. These two alternatives are

(a) ω exp ( ω̃t
ω
− 1) (exponential);

(b) 2 ω
π

[
tan−1(πω̃t

2ω
− π

2
) + π

2

]
(inverse tangent).

The first column in Table 4 reports the original estimates and π̂S in Table 1 of the paper, and

the second and third columns report the parameter estimates and π̂S for the two alternative

transformations. The two alternative transformations do not provide significantly better π̂S

results than the original specification reported in the first column.

Functions determining financial market participations in equations (2.5), respectively

(2.6), are smooth and increasing functions in the revenue, respectively realized stock returns.

As a robustness check, we tried several alternatives and replaced the functions (1 − e−x)2

in (2.5) and (2.6) with two alternative functions g(x) that are first order equivalent with

(1− e−x)2 at x = 0, i.e. satisfying g(0) = 0, limx→∞ g(x) = 1 and ∂g/∂x|x=0 = 0. These two

alternatives are

(a) x2

1+x2 (polynomial);

(b) 2
π
tan−1(x2) (inverse tangent).

The fourth and fifth columns report the parameter estimates and π̂S values for these two

alternative transformations. The polynomial transformation in the fourth column does not

provide significantly different π̂S results from the one reported in the first column, while the

inverse tangent variant in the fifth column provides significantly worse π̂S results than the

original specification.

10



Table 4: Empirical estimates for alternative volatility and participation specifica-
tions

(2.4)-(2.6) (2.4) Variants (2.5)-(2.6) Variants
Symbol Unchanged Exponential Inverse tangent Polynomial Inverse tangent

βn 0.5181 0.5679 0.5564 0.5897 0.5049
βb 0.9701 0.9763 0.9781 0.9812 0.9679
βs 0.8917 0.8710 0.8727 0.8883 0.8954
γn 2.3552 2.5720 2.5334 1.9755 2.4621
γb 0.4614 0.4522 0.4570 0.4484 0.4581
γs 1.5641 1.8205 1.7598 1.5617 1.5879
κn 201.5889 167.7987 174.7603 161.0874 209.2100
κb 6.3829 5.1132 4.5470 3.3234 6.8251
κs 27.8652 33.2239 32.9190 28.8584 26.7052
σn 0.7255 0.9371 0.8971 0.6347 0.7630
σb 0.3141 0.3108 0.3143 0.3104 0.3142
σs 0.3125 0.3612 0.3477 0.3078 0.3157
ã 6.6840 7.0600 7.0173 5.9944 5.4314
a 1.4272 1.4347 1.4350 1.1873 1.1304
ξ 0.0114 0.0114 0.0114 0.0114 0.0114
ρ 0.9909 0.9909 0.9909 0.9909 0.9909
σζ 0.1798 0.1798 0.1798 0.1798 0.1798
ψn −5.2972 -4.1590 -4.4144 −4.2038 -5.4937
ψb −0.1482 -0.1095 -0.0916 −0.0627 -0.1626
ψs −0.6872 -0.8031 -0.8093 −0.7201 -0.6516
µ 6.9049 7.0759 6.9835 6.9060 6.9110
ω 0.0030 0.0034 0.0034 0.0030 0.0030
ϕ 0.0444 0.0661 0.0584 0.0445 0.0417
σ 0.0050 0.0045 0.0046 0.0050 0.0050
π̂S 93.39% 93.61%

(0.2083)
93.59%
(0.2302)

93.24%
(0.2923)

90.08%
(0.0000)
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5 Lettau et al. (2019)-type regression with pricing ker-

nel for H = 1

We redid the exercise in Table 5 of the paper using the pricing kernel and H = 1. Let us

define

Si,t = βse
−γs∆log cis,t+1

which is the pricing kernel of agent i (who is a stockholder at date t) at horizon H = 1.

We define St the average pricing kernel for stockholders:

St =

∑
i 1i∈{s}Si,t∑

i 1i∈{s}

where 1i∈{s} = 1 if i is a stockholder at date t (i.e. if p̃itp
i
t > 0.5) and 0 otherwise.

Regressions become, for each set of portfolios j (Size/BM, REV, Size/OP and Size/INV):

Re
j,t = αj

S + βj
SSt + ϵt ,

E[Rj
t −Rf

t ] = αR + βRβ̂
j
S + υj,

where the loading factor on St is denoted by βj
S. Table 5 reports the regression results.

Intercept and slope coefficients are multiplied by 100 just like in Table 5 of the paper.

These results complete our long-run analysis and are convincingly satisfactory for most

portfolios, with the exception of the Size/BM portfolio. The prices of risk are slightly larger

than with the long-run factors and the R2 are also quite large. Finally, the RMSE
RMSR

ratios are

of comparable magnitude to those in the long-run analysis.

In our initial exercise, we regress the excess return on our macroeconomic factor to obtain

our risk loading. We then regress the portfolio returns on this risk loading. The results are

overall better than with the pricing kernel as a risk factor (larger R2 and significant β).

Compared to the results of Lettau et al. (2019), the R2 are admittedly overall smaller (even

though not small), but we rely on income data that are of much poorer quality that those

of Lettau et al. (2019), who use very reliable tax data. This is especially true at the top

of the income distribution that matters for stock holdings. However, as in our case, their

α are significantly different from zero, which means that their model, like ours, is partly

misspecified and does not fully capture the price of risk in the cross-section.
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Overall, we see these two exercises as supporting evidence that our consumption-based

asset pricing model – with few twists compared to the standard model – is able to capture

a non-negligible share of the price of risk in the cross-section.

Table 5: OLS regressions for Fama-McBeth analysis with characteristic-based
portfolios

Equity portfolios

Panel A: Size/BM Panel B: REV

α̂R 2.56
[2.33,2.80]

2.77
[2.68,2.86]

β̂R 1.27
[−8.17,10.78]

8.32
[5.38,11.29]

R2 0.00
[0.00,0.21]

0.79
[0.55,0.94]

RMSE
RMSR

0.22 0.05

Panel C: Size/INV Panel D: Size/OP

α̂R 2.70
[2.51,2.90]

2.63
[2.45,2.81]

β̂R 12.32
[−1.78,26.55]

21.39
[7.97,34.76]

R2 0.11
[0.00,0.41]

0.30
[0.05,0.59]

RMSE
RMSR

0.18 0.17

Table 6: This table reports OLS regression estimates of the models E[Rj
t −Rf

t ] = αR + βRβ̂
j
S + υj , where

{β̂j
S} are obtained from OLS regressions of the models Re

j,t = αj
S + βj

SSt + ϵt for Reversal Fama stocks,

with pricing kernel Sts and Re
j,t = Rj,t − Rf

t . Bootstrapped 95% confidence intervals are reported under
regression values. Intercept and slope coefficients are multiplied by 100.

6 Estimating the distribution of ωt conditional on l1:t ≡
{logRs

t′ − logRf
t′}t′=1,...,t using a particle filter

At each date t, the equity premium lt = logRs
t − logRf

t , t = 1, . . . , T is assumed to be

generated from the equity premium process with hidden states ωt. The probability density

function of the states ωt given the observations l1:t is not available in closed form but can

be easily obtained via a bootstrap particle filter (Gordon, Salmond and Smith 1993) as

described below.
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At date t = 0, generate particles {ω̃(j)
0 }Jj=1 using the stationary distribution N (ω, σ2

1−ϕ2 ),

where J is a fixed large positive integer. For t ≥ 1, iterate the following three steps.

Step 1 (Sampling): For every j = 1, . . . , J, simulate the filter forward as follows. Generate

ω̃
(j,∗)
t using ω̃

(j)
t−1 by drawing ω̃

(j,∗)
t fromN [ω+ϕ(ω̃

(j)
t−1−ω), σ2]. For each j = 1, . . . , J , calculate

ω
(j,∗)
t = ω̃

(j,∗)
t if ω̃

(j,∗)
t ≥ ω and ω

(j,∗)
t = ω/(2ω − ω̃

(j,∗)
t ) otherwise.

Step 2 (Correction): Given the new equity premium lt, compute:

q
(j)
t = f(lt|ω(j,∗)

t ) =
1√

2πω
(j,∗)
t

exp

[
−(lt − µω

(j,∗)
t )2

2ω
(j,∗)
t

]
, j = 1, . . . , J ,

Step 3 (Selection): For each j = 1, . . . , J, draw ω̃
(j)
t from ω̃

(1,∗)
t , . . . , ω̃

(J,∗)
t with importance

weights r
(1)
t , . . . , r

(J)
t , where r

(j)
t = q

(j)
t /
∑J

j′=1 q
(j′)
t . For each j = 1, . . . , J,, calculate ω

(j)
t = ω̃

(j)
t

if ω̃
(j)
t ≥ ω and ω

(j)
t = ω/(2ω − ω̃

(j)
t ) otherwise.

At each date t, the set {ω(j)
t }Jj=1 finitely estimates the conditional distribution of ωt given

l1:t.

7 Estimating the distribution of ωt+1 conditional on

l1:t ≡ {logRs
t′ − logRf

t′}t′=1,...,t using a particle filter

To estimate the distribution of ωt+1 using equity premium observations until date t, simulate

a set of particles {ω̃(j)
t }Jj=1 following the algorithm described in Section 6. Then, generate

ω̃
(j,∗)
t+1 using ω̃

(j)
t by drawing ω̃

(j,∗)
t+1 from N [ω+ϕ(ω̃

(j)
t −ω), σ2]. For each j = 1, . . . , J , calculate

ω
(j,∗)
t+1 = ω̃

(j,∗)
t+1 if ω̃

(j,∗)
t+1 ≥ ω and ω

(j,∗)
t+1 = ω/(2ω − ω̃

(j,∗)
t+1 ) otherwise.

The set {ω(j,∗)
t+1 } finitely estimates the conditional distribution of ωt+1 given l1:t.

8 Estimating the distribution of ω1:T conditional on

l1:T ≡ {logRs
t′ − logRf

t′}t′=1,...,T using a particle smoother

The probability density function of the states ωt given the observations l1:T is not available

in closed form but can easily be obtained via a particle smoother (Godsill et al. 2004) as

described below.
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Step 1 (Particle filtering): Use the particle filter defined in Section 6 to obtain an approx-

imate particle representation of f(ω̃t|l1:t) at each date t = 1, . . . , T . Denote these particles

by {ω̃(j)
t }j=1,...,J

t=1,...,T .

For k = 1, . . . , K, replicate Steps 2-4, where K is a fixed large positive integer.

Step 2 (Positioning of the backward simulation): Choose ω̃
(k,∗)
T = ω̃

(j)
T with probability

1/J .

Step 3 (Backward simulation): For t = T − 1, . . . , 1 and each j = 1, . . . , J

(i) compute the importance weights

q
(j,k)
t|t+1 = f(ω̃

(k,∗)
t+1 |ω̃(j)

t ) =
1√
2πσ2

exp

{
−
[ω̃

(k,∗)
t+1 − (ω + ϕ(ω̃

(j)
t − ω)]2

2σ2

}
, j = 1, . . . , J ;

(ii) choose ω̃
(k,∗)
t = ω̃

(j)
t with probability r

(j,k)
t|t+1, where r

(j,k)
t|t+1 = q

(j,k)
t|t+1/

∑J
j′=1 q

(j′,k)
t|t+1 .

Step 4 (Path drawing): ω̃
(k,∗)
1:T = (ω̃

(k,∗)
1 , . . . , ω̃

(k,∗)
T ) is an approximate realization from

f(ω̃1:T |l1:T ).

For each k = 1, . . . , K, and t = 1, . . . , T , calculate ω
(k,∗)
t = ω̃

(k,∗)
t if ω̃

(k,∗)
t ≥ ω and ω

(k,∗)
t =

ω/(2ω−ω̃(k,∗)
t ) otherwise. For each k = 1, . . . , K, ω

(k,∗)
1:T = (ω

(k,∗)
1 , . . . , ω

(k,∗)
T ) is an approximate

realization from f(ω1:T |l1:T ).

9 Simulated maximum likelihood estimation of µ, ω, ϕ

and σ using a particle filter

We can estimate µ, ω, ϕ, and σ by maximizing the simulated log-likelihood function associ-

ated with the equity premium process:

T∑
t=1

log

(
1

J

J∑
j=1

q
(j)
t

)
,
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where q
(j)
t are defined in the second step of the particle filtering algorithm in Section 6. In

order to obtain a smoother objective function, we choose a large number of particles J = 106.

10 Euler tests

In Figure 4 (continuous lines), we report the sample means {Ey

x,t}Tt=1} obtained using the J

particles {ωj
t}Jj=1 for x = n, b, s and y = B, S. In addition, we also plot (dotted lines) the

5% critical values for {Ey

x,t}Tt=1} associated with the tests (T1)–(T6). Bond Euler conditions

are in the left panels, while stock equations are in the right panels.

Figure 4: Test statistics (continuous lines) and associated critical values (dotted
lines) for the six Euler conditions.
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For bonds, the quantities {EB
s,t}t=1,...,T (top left panel) and {EB

b,t}t=1,...,T (middle left panel)

lie within the Euler acceptance regions and (T1) and (T2) hold for all t. In the bottom left

panel, we see that EB
n,t is less than one but not significantly for all t. Note that the test

in the bottom left panel is unilateral and not bilateral as it was in the top panels. We can

therefore conclude that (T3) holds – though not significantly – at all dates t.

16



For stocks, ES
s,t (top right panel) is not significantly different from 1 and (T4) holds for

all t. In the middle right panel, we see that ES
b,t is significantly greater than one and that

(T5) holds for all t, thereby confirming the presence of a stock market participation cost.

In the bottom right panel, ES
n,t is less than one, but not significantly, and (T6) holds, but

not significantly, for all t. One conclusion of the tests in Figure 4 is that our estimation

is consistent with our initial interpretation of household types: stockholders (who also hold

bonds) are of type s, bondholders (who do not hold stocks) are of type b, and nonparticipants

are of type n.

11 Unconditional Euler tests

We test whether the Euler conditions (T1)-(T6) in Section 4.3 of the main paper are satisfied

for equity return data available from Kenneth French’s Dartmouth website on 25 size/book-

to-market sorted portfolios (Size/BM, Table 7), 10 long-run reversal portfolios (REV, Ta-

ble 10), 25 size/investment portfolios (Size/INV, Table 8), 25 size/operating profitability

portfolios (Size/OP, Table 9) and 10 industry portfolios (IND, Table 11). For each of these

portfolios, we estimate the four equity premium parameters µ, ω, ϕ, and σ driving the equity

premium dynamics. The estimation is performed using the simulated maximum likelihood

described in Section 7 of the appendix. In Tables 10-11, we report the sample means and

associated standard errors of {EB
x,t}t=1,...,T for bonds and {ES

x,t}t=1,...,T for stocks. The results

are clear and strongly support the limited participation model at the 5% significance level.

For bond holding, the three Euler conditions hold. For stock holding, the Euler condition for

nonparticipants is significantly less than one most of the time. For stockholders, ES
s is not

significantly different from one most of the time. For bondholders, ES
b is greater than one for

most portfolios but not significantly. Overall, the tests for Euler conditions are consistent

with the model and confirm that our estimated model properly isolates three categories of

households: stockholders, bondholders, and nonparticipants.
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Table 7: Unconditional Euler tests for Size/BM

Euler Bond Conditions Euler Stock Conditions

Portfolio E
B

n E
B

b E
B

s E
S

n E
S

b E
S

s

SMALL LoBM 0.1314
(0.1706)

0.8963
(0.1102)

0.5810
(0.2520)

0.1373
(0.1757)

0.9038
(0.1053)

0.5902
(0.2497)

ME1 BM2 0.2388
(0.2493)

0.9490
(0.0752)

0.7049
(0.2113)

0.2486
(0.2550)

0.9725
(0.0587)

0.7241
(0.2031)

ME1 BM3 0.2572
(0.2181)

0.9745
(0.0447)

0.7692
(0.1428)

0.2697
(0.2231)

0.9976
(0.0315)

0.7904
(0.1342)

ME1 BM4 0.3159
(0.2606)

0.9812
(0.0458)

0.7928
(0.1487)

0.3310
(0.2656)

1.0152
(0.0238)

0.8217
(0.1350)

SMALL HiBM 0.2640
(0.2477)

0.9662
(0.0577)

0.7484
(0.1756)

0.2765
(0.2535)

0.9990
(0.0360)

0.7752
(0.1636)

ME2 BM1 0.1964
(0.2171)

0.9378
(0.0799)

0.6736
(0.2156)

0.2047
(0.2226)

0.9543
(0.0689)

0.6885
(0.2101)

ME2 BM2 0.3372
(0.2996)

0.9757
(0.0571)

0.7803
(0.1787)

0.3500
(0.3043)

1.0041
(0.0361)

0.8040
(0.1662)

ME2 BM3 0.3744
(0.2969)

0.9878
(0.0453)

0.8156
(0.1498)

0.3892
(0.3008)

1.0158
(0.0255)

0.8401
(0.1367)

ME2 BM4 0.3704
(0.2801)

0.9904
(0.0405)

0.8227
(0.1365)

0.3862
(0.2839)

1.0195
(0.0213)

0.8485
(0.1233)

ME2 BM5 0.2799
(0.2682)

0.9641
(0.0634)

0.7453
(0.1898)

0.2920
(0.2739)

0.9968
(0.0402)

0.7714
(0.1775)

ME3 BM1 0.2335
(0.2353)

0.9553
(0.0660)

0.7183
(0.1920)

0.2433
(0.2407)

0.9747
(0.0532)

0.7356
(0.1848)

ME3 BM2 0.3717
(0.3015)

0.9860
(0.0476)

0.8104
(0.1560)

0.3860
(0.3055)

1.0136
(0.0277)

0.8345
(0.1430)

ME3 BM3 0.3910
(0.2624)

0.9970
(0.0328)

0.8434
(0.1142)

0.4079
(0.2653)

1.0227
(0.0173)

0.8672
(0.1028)

ME3 BM4 0.3852
(0.2943)

0.9908
(0.0422)

0.8248
(0.1417)

0.4006
(0.2979)

1.0186
(0.0229)

0.8495
(0.1286)

ME3 BM5 0.3581
(0.3008)

0.9823
(0.0509)

0.7995
(0.1641)

0.3727
(0.3053)

1.0156
(0.0266)

0.8273
(0.1491)

ME4 BM1 0.3310
(0.3091)

0.9690
(0.0655)

0.7628
(0.1980)

0.3430
(0.3141)

0.9980
(0.0430)

0.7862
(0.1855)

ME4 BM2 0.4437
(0.3312)

0.9955
(0.0429)

0.8423
(0.1457)

0.4583
(0.3336)

1.0192
(0.0248)

0.8637
(0.1328)

ME4 BM3 0.4092
(0.3154)

0.9916
(0.0443)

0.8289
(0.1485)

0.4235
(0.3185)

1.0158
(0.0266)

0.8506
(0.1362)

ME4 BM4 0.4472
(0.3180)

0.9984
(0.0387)

0.8509
(0.1336)

0.4631
(0.3202)

1.0237
(0.0203)

0.8738
(0.1203)

ME4 BM5 0.2799
(0.2454)

0.9739
(0.0500)

0.7698
(0.1578)

0.2933
(0.2508)

1.0048
(0.0304)

0.7961
(0.1460)

BIG LoBM 0.4623
(0.3014)

1.0029
(0.0330)

0.8651
(0.1169)

0.4790
(0.3030)

1.0261
(0.0172)

0.8869
(0.1048)

ME5 BM2 0.5455
(0.3496)

1.0082
(0.0343)

0.8855
(0.1228)

0.5612
(0.3496)

1.0292
(0.0175)

0.9051
(0.1097)

ME5 BM3 0.5249
(0.3129)

1.0094
(0.0294)

0.8883
(0.1069)

0.5435
(0.3130)

1.0349
(0.0114)

0.9121
(0.0927)

ME5 BM4 0.4281
(0.3612)

0.9844
(0.0577)

0.8109
(0.1844)

0.4402
(0.3644)

1.0078
(0.0378)

0.8308
(0.1717)

BIG HiBM 0.3710
(0.3325)

0.9756
(0.0624)

0.7832
(0.1932)

0.3834
(0.3368)

1.0040
(0.0395)

0.8064
(0.1798)
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Table 8: Unconditional Euler tests for Size/INV

Euler Bond Conditions Euler Stock Conditions

Portfolio E
B

n E
B

b E
B

s E
S

n E
S

b E
S

s

SMALL LoINV 0.1908
(0.2187)

0.9287
(0.0896)

0.6540
(0.2321)

0.2007
(0.2257)

0.9723
(0.0592)

0.6835
(0.2212)

ME1 INV2 0.2807
(0.2318)

0.9783
(0.0436)

0.7819
(0.1412)

0.2950
(0.2369)

1.0090
(0.0256)

0.8086
(0.1298)

ME1 INV3 0.3082
(0.2183)

0.9882
(0.0335)

0.8118
(0.1136)

0.3251
(0.2227)

1.0203
(0.0166)

0.8407
(0.1020)

ME1 INV4 0.3371
(0.2763)

0.9831
(0.0465)

0.7998
(0.1515)

0.3509
(0.2806)

1.0089
(0.0292)

0.8226
(0.1402)

SMALL HiINV 0.1831
(0.2051)

0.9352
(0.0797)

0.6657
(0.2136)

0.1907
(0.2104)

0.9460
(0.0728)

0.6772
(0.2096)

ME2 INV1 0.2784
(0.2799)

0.9560
(0.0739)

0.7261
(0.2122)

0.2896
(0.2858)

0.9885
(0.0496)

0.7509
(0.2003)

ME2 INV2 0.3883
(0.2793)

0.9941
(0.0373)

0.8347
(0.1277)

0.4047
(0.2826)

1.0220
(0.0192)

0.8598
(0.1149)

ME2 INV3 0.3620
(0.2460)

0.9944
(0.0326)

0.8337
(0.1130)

0.3792
(0.2494)

1.0223
(0.0167)

0.8594
(0.1014)

ME2 INV4 0.3751
(0.3089)

0.9849
(0.0496)

0.8079
(0.1615)

0.3896
(0.3130)

1.0153
(0.0271)

0.8337
(0.1472)

ME2 INV5 0.2216
(0.2425)

0.9389
(0.0843)

0.6804
(0.2267)

0.2300
(0.2479)

0.9544
(0.0733)

0.6945
(0.2211)

ME3 INV1 0.2973
(0.2589)

0.9757
(0.0506)

0.7763
(0.1602)

0.3107
(0.2640)

1.0048
(0.0315)

0.8012
(0.1486)

ME3 INV2 0.4354
(0.2982)

0.9994
(0.0354)

0.8530
(0.1236)

0.4520
(0.3005)

1.0249
(0.0180)

0.8764
(0.1108)

ME3 INV3 0.4247
(0.2490)

1.0033
(0.0267)

0.8644
(0.0958)

0.4444
(0.2510)

1.0321
(0.0106)

0.8912
(0.0835)

ME3 INV4 0.3586
(0.2738)

0.9891
(0.0408)

0.8180
(0.1368)

0.3742
(0.2778)

1.0175
(0.0223)

0.8433
(0.1243)

ME3 INV5 0.2596
(0.2655)

0.9529
(0.0744)

0.7165
(0.2117)

0.2694
(0.2709)

0.9743
(0.0590)

0.7344
(0.2036)

ME4 INV1 0.3720
(0.3075)

0.9844
(0.0499)

0.8062
(0.1622)

0.3858
(0.3115)

1.0113
(0.0301)

0.8295
(0.1494)

ME4 INV2 0.4199
(0.2712)

1.0004
(0.0313)

0.8552
(0.1106)

0.4381
(0.2736)

1.0286
(0.0140)

0.8811
(0.0976)

ME4 INV3 0.4606
(0.3036)

1.0024
(0.0337)

0.8635
(0.1189)

0.4773
(0.3053)

1.0263
(0.0172)

0.8858
(0.1064)

ME4 INV4 0.4654
(0.3416)

0.9976
(0.0423)

0.8498
(0.1447)

0.4805
(0.3436)

1.0231
(0.0223)

0.8725
(0.1305)

ME4 INV5 0.2702
(0.2781)

0.9512
(0.0786)

0.7143
(0.2208)

0.2802
(0.2837)

0.9758
(0.0601)

0.7339
(0.2117)

BIG LoINV 0.4428
(0.2760)

1.0030
(0.0300)

0.8645
(0.1068)

0.4617
(0.2779)

1.0315
(0.0122)

0.8908
(0.0934)

ME5 INV2 0.5624
(0.2652)

1.0161
(0.0206)

0.9112
(0.0778)

0.5807
(0.2642)

1.0331
(0.0105)

0.9283
(0.0689)

ME5 INV3 0.5803
(0.3516)

1.0119
(0.0317)

0.8985
(0.1151)

0.5963
(0.3507)

1.0318
(0.0156)

0.9174
(0.1021)

ME5 INV4 0.5770
(0.3845)

1.0080
(0.0383)

0.8864
(0.1358)

0.5915
(0.3839)

1.0291
(0.0196)

0.9057
(0.1214)

BIG HiINV 0.3729
(0.3149)

0.9825
(0.0528)

0.8013
(0.1698)

0.3862
(0.3190)

1.0090
(0.0328)

0.8240
(0.1570)
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Table 9: Unconditional Euler tests for Size/OP

Euler Bond Conditions Euler Stock Conditions

Portfolio E
B

n E
B

b E
B

s E
S

n E
S

b E
S

s

SMALL LoOP 0.1704
(0.1997)

0.9244
(0.0893)

0.6414
(0.2286)

0.1777
(0.2052)

0.9385
(0.0801)

0.6546
(0.2243)

ME1 OP2 0.2766
(0.2022)

0.9839
(0.0343)

0.7969
(0.1148)

0.2920
(0.2068)

1.0129
(0.0197)

0.8233
(0.1049)

ME1 OP3 0.3300
(0.2492)

0.9875
(0.0386)

0.8113
(0.1294)

0.3454
(0.2534)

1.0153
(0.0219)

0.8364
(0.1181)

ME1 OP4 0.2888
(0.2286)

0.9815
(0.0404)

0.7913
(0.1328)

0.3034
(0.2334)

1.0104
(0.0239)

0.8170
(0.1220)

SMALL HiOP 0.2384
(0.2403)

0.9554
(0.0669)

0.7193
(0.1942)

0.2489
(0.2460)

0.9809
(0.0498)

0.7404
(0.1853)

ME2 OP1 0.2163
(0.2416)

0.9335
(0.0898)

0.6687
(0.2356)

0.2244
(0.2471)

0.9492
(0.0786)

0.6825
(0.2302)

ME2 OP2 0.3597
(0.3028)

0.9822
(0.0513)

0.7994
(0.1652)

0.3732
(0.3070)

1.0087
(0.0320)

0.8222
(0.1529)

ME2 OP3 0.3627
(0.2509)

0.9938
(0.0338)

0.8320
(0.1164)

0.3796
(0.2544)

1.0216
(0.0175)

0.8575
(0.1047)

ME2 OP4 0.3806
(0.3111)

0.9858
(0.0491)

0.8107
(0.1605)

0.3951
(0.3151)

1.0155
(0.0271)

0.8361
(0.1463)

ME2 OP5 0.2671
(0.2343)

0.9729
(0.0490)

0.7659
(0.1544)

0.2809
(0.2399)

1.0068
(0.0282)

0.7945
(0.1421)

ME3 OP1 0.2286
(0.2529)

0.9351
(0.0906)

0.6741
(0.2384)

0.2370
(0.2584)

0.9522
(0.0780)

0.6886
(0.2325)

ME3 OP2 0.3984
(0.3048)

0.9915
(0.0430)

0.8279
(0.1444)

0.4132
(0.3080)

1.0169
(0.0249)

0.8506
(0.1319)

ME3 OP3 0.3846
(0.2192)

1.0007
(0.0249)

0.8543
(0.0890)

0.4029
(0.2216)

1.0249
(0.0130)

0.8775
(0.0797)

ME3 OP4 0.3582
(0.2634)

0.9909
(0.0378)

0.8234
(0.1280)

0.3741
(0.2672)

1.0183
(0.0207)

0.8482
(0.1162)

ME3 OP5 0.3216
(0.2694)

0.9804
(0.0478)

0.7912
(0.1545)

0.3362
(0.2744)

1.0129
(0.0262)

0.8188
(0.1410)

ME4 OP1 0.2582
(0.2693)

0.9486
(0.0796)

0.7070
(0.2217)

0.2675
(0.2747)

0.9678
(0.0655)

0.7232
(0.2144)

ME4 OP2 0.3931
(0.3167)

0.9876
(0.0482)

0.8165
(0.1586)

0.4072
(0.3203)

1.0142
(0.0283)

0.8397
(0.1455)

ME4 OP3 0.4514
(0.2898)

1.0027
(0.0318)

0.8640
(0.1128)

0.4686
(0.2916)

1.0267
(0.0161)

0.8865
(0.1008)

ME4 OP4 0.4243
(0.3048)

0.9965
(0.0386)

0.8440
(0.1327)

0.4404
(0.3075)

1.0231
(0.0200)

0.8679
(0.1194)

ME4 OP5 0.4102
(0.3131)

0.9923
(0.0434)

0.8310
(0.1459)

0.4254
(0.3163)

1.0198
(0.0233)

0.8552
(0.1322)

BIG LoOP 0.3371
(0.3328)

0.9579
(0.0813)

0.7380
(0.2314)

0.3462
(0.3372)

0.9731
(0.0687)

0.7515
(0.2241)

ME5 OP2 0.4626
(0.3319)

0.9988
(0.0401)

0.8529
(0.1382)

0.4770
(0.3338)

1.0191
(0.0247)

0.8718
(0.1267)

ME5 OP3 0.4968
(0.3717)

0.9978
(0.0460)

0.8522
(0.1560)

0.5102
(0.3732)

1.0188
(0.0280)

0.8711
(0.1430)

ME5 OP4 0.5989
(0.3334)

1.0151
(0.0275)

0.9096
(0.1018)

0.6151
(0.3319)

1.0325
(0.0142)

0.9266
(0.0905)

BIG HiOP 0.4952
(0.2833)

1.0086
(0.0269)

0.8846
(0.0979)

0.5130
(0.2839)

1.0295
(0.0137)

0.9047
(0.0872)
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Table 10: Unconditional Euler tests for REV

Euler Bond Conditions Euler Stock Conditions

Portfolio E
B

n E
B

b E
B

s E
S

n E
S

b E
S

s

Loprior 0.2799
(0.2886)

0.9456
(0.0889)

0.7050
(0.2396)

0.2899
(0.2944)

0.9742
(0.0660)

0.7260
(0.2296)

Prior 2 0.3688
(0.2833)

0.9885
(0.0437)

0.8175
(0.1448)

0.3839
(0.2873)

1.0162
(0.0246)

0.8419
(0.1321)

Prior 3 0.4717
(0.3225)

1.0016
(0.0366)

0.8617
(0.1280)

0.4878
(0.3242)

1.0256
(0.0189)

0.8838
(0.1148)

Prior 4 0.5377
(0.3678)

1.0049
(0.0390)

0.8753
(0.1371)

0.5525
(0.3682)

1.0272
(0.0203)

0.8956
(0.1230)

Prior 5 0.5140
(0.3409)

1.0052
(0.0357)

0.8748
(0.1265)

0.5299
(0.3416)

1.0278
(0.0182)

0.8958
(0.1131)

Prior 6 0.5301
(0.2699)

1.0130
(0.0228)

0.9000
(0.0847)

0.5519
(0.2695)

1.0409
(0.0059)

0.9264
(0.0711)

Prior 7 0.5264
(0.2391)

1.0143
(0.0192)

0.9041
(0.0723)

0.5485
(0.2386)

1.0398
(0.0058)

0.9287
(0.0611)

Prior 8 0.5272
(0.2548)

1.0136
(0.0210)

0.9018
(0.0787)

0.5479
(0.2544)

1.0373
(0.0077)

0.9247
(0.0675)

Prior 9 0.4783
(0.2931)

1.0058
(0.0299)

0.8750
(0.1073)

0.4955
(0.2942)

1.0277
(0.0155)

0.8958
(0.0959)

Hiprior 0.2932
(0.2607)

0.9735
(0.0529)

0.7702
(0.1659)

0.3062
(0.2660)

1.0029
(0.0334)

0.7951
(0.1543)
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Table 11: Unconditional Euler tests for IND

Euler Bond Conditions Euler Stock Conditions

Portfolio E
B

n E
B

b E
B

s E
S

n E
S

b E
S

s

NoDur 0.5062
(0.2759)

1.0103
(0.0250)

0.8904
(0.0919)

0.5272
(0.2761)

1.0388
(0.0074)

0.9171
(0.0779)

Durbl 0.3161
(0.3195)

0.9532
(0.0841)

0.7250
(0.2352)

0.3264
(0.3247)

0.9811
(0.0611)

0.7460
(0.2242)

Manuf 0.4658
(0.3508)

0.9960
(0.0450)

0.8452
(0.1522)

0.4801
(0.3529)

1.0199
(0.0256)

0.8665
(0.1386)

Enrgy 0.3593
(0.2627)

0.9913
(0.0374)

0.8244
(0.1270)

0.3748
(0.2663)

1.0164
(0.0219)

0.8475
(0.1159)

HiTec 0.2879
(0.3074)

0.9389
(0.0974)

0.6918
(0.2562)

0.2971
(0.3129)

0.9646
(0.0763)

0.7105
(0.2473)

Telcm 0.3336
(0.2123)

0.9938
(0.0285)

0.8302
(0.0994)

0.3500
(0.2156)

1.0174
(0.0169)

0.8527
(0.0906)

Shops 0.4687
(0.3568)

0.9954
(0.0463)

0.8436
(0.1561)

0.4829
(0.3589)

1.0201
(0.0259)

0.8654
(0.1419)

Hlth 0.3716
(0.1943)

1.0010
(0.0217)

0.8546
(0.0783)

0.3908
(0.1966)

1.0264
(0.0108)

0.8790
(0.0697)

Utils 0.5116
(0.1576)

1.0160
(0.0117)

0.9091
(0.0447)

0.5341
(0.1572)

1.0374
(0.0045)

0.9306
(0.0384)

Other 0.3565
(0.2913)

0.9845
(0.0474)

0.8053
(0.1549)

0.3703
(0.2954)

1.0101
(0.0295)

0.8279
(0.1431)

12 Deriving the participation cost

Consider at date t a household i of type b, that is, with h̃it = 1 and hit = 0. Its intertemporal

utility V b,i
t is:

V b,i
t =

(
cb,it

)1−γb

1− γb
+ βbEt


(
cb,it+1

)1−γb

1− γb

+ β2
bEt

[
V b,i
t+2

]
,

=

(
cb,it

)1−γb

1− γb

(
1 + βbEte

(1−γb)∆ log cb,it+1

)
+ β2

bEt

[
V b,i
t+2

]
. (12.1)

We consider the following thought experiment. Household i is constrained to participate

in the stock market at date t. Household i remains endowed with individual preferences but

must switch to the consumption growth process of stockholders, ∆ log ci,st+1. To compensate

household i for this constrained stock market participation, it receives a flat amount τ b,it at

date t. We assume that this amount is fully consumed at date t. The intertemporal utility
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of this constrained household is denoted by V b,i,s
t and can be expressed as follows:

V b,i,s
t =

(
cb,it + τ b,it

)1−γb

1− γb

(
1 + βbEte

(1−γb)∆ log cs,it+1

)
+ Et

[
β2V b,i,s

t+2

]
. (12.2)

The compensation τ it exactly offsets the forced participation if V b,i,s
t = V b,i

t . If we assume

that the constrained participation has no effect after date t+2, the equality V b,i,s
t = V b,i

t can

be simplified using equations (12.1) and (12.2) as follows(
cb,it + τ b,it

)1−γb

1− γb

(
1 + βbEte

(1−γb)∆ log cs,it+1

)
=

(
cb,it

)1−γb

1− γb

(
1 + βbEte

(1−γb)∆ log cb,it+1

)
,

or:

τ b,it

cb,it
=

(
1 + βbEte

(1−γb)∆ log cb,it+1

) 1
1−γb(

1 + βbEte
(1−γb)∆ log cs,it+1

) 1
1−γb

− 1. (12.3)

We will compute conditional expectation by conditioning on ωt+1 (more precisely, the

filtration generated by (ωt)). Formally:

Et

[
e(1−γb)∆ log cb,it+1

]
= Et

[
E
[
e(1−γb)∆ log cb,it+1|ωt+1

]]
.

Using the dynamics of the log-consumption growth, we have:

(1− γb)∆ logcb,it+1 =
1− γb
γb

{
log βb + log(Rf

t+1) + κbωt+1 + σbε
i
t+1 + ψb

√
ωt+1ut+1

}
,

∼ωt+1 N

(
1− γb
γb

(
log βb + log(Rf

t+1) + κbωt+1

)
,

(
1− γb
γb

)2 (
σ2
b + ψ2

bωt+1

))
,

(1− γb)∆ logcs,it+1 =
1− γb
γs

{
log βs + log(Rf

t+1) + κsωt+1 + σsε
i
t+1 + ψs

√
ωt+1ut+1

}
,

∼ωt+1 N

(
1− γb
γs

(
log βs + log(Rf

t+1) + κsωt+1

)
,

(
1− γb
γs

)2

(σ2
s + ψ2

sωt+1)

)
.
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In the above equations, ∼ωt+1 denotes the law conditional on ωt+1. We deduce:

Et

[
e(1−γb)∆ log cb,it+1|ωt+1

]
=

exp

(
1− γb
γb

(
log βb + log(Rf

t+1) + κbωt+1

)
+

1

2

(
1− γb
γb

)2 (
σ2
b + ψ2

bωt+1

))
,

and

Et

[
e(1−γb)∆ log cs,it+1 |ωt+1

]
=

exp

(
1− γb
γs

(
log βs + log(Rf

t+1) + κsωt+1

)
+

1

2

(
1− γb
γs

)2

(σ2
s + ψ2

sωt+1)

)
.

We deduce:

βbEt[e
(1−γb)∆ log cb,it+1 ] = β

1
γb
b

(
Rf

t+1

) 1−γb
γb e

(
1−γb
γb

)2 σ2b
2 E

[
e

(
κb+

1−γb
γb

ψ2
b
2

)
1−γb
γb

ωt+1

]
,

βbEt[e
(1−γb)∆ log cs,it+1 ] = βbβ

1−γb
γs

s

(
Rf

t+1

) 1−γb
γs

e(
1−γb
γs

)
2 σ2s

2 E

[
e

(
κs+

1−γb
γs

ψ2
s
2

)
1−γb
γs

ωt+1

]
.

Finally:

τ b,it

cb,it
=

(
1 + β

1
γb
b

(
Rf

t+1

) 1−γb
γb e

(
1−γb
γb

)2 σ2b
2 Ee

(
κb+

1−γb
γb

ψ2
b
2

)
1−γb
γb

ωt+1

) 1
1−γb

(
1 + βbβ

1−γb
γs

s

(
Rf

t+1

) 1−γb
γs

e(
1−γb
γs

)
2 σ2s

2 Ee

(
κs+

1−γb
γs

ψ2
s
2

)
1−γb
γs

ωt+1

) 1
1−γb

− 1. (12.4)
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